
Adjustment of visual information for visually impaired
people

Filo, Nikola

Master's thesis / Diplomski rad

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Graphic Arts / Sveučilište u Zagrebu, Grafički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:216:196735

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-30

Repository / Repozitorij:

Faculty of Graphic Arts Repository

https://urn.nsk.hr/urn:nbn:hr:216:196735
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.grf.unizg.hr
https://zir.nsk.hr/islandora/object/grf:2805
https://repozitorij.unizg.hr/islandora/object/grf:2805
https://dabar.srce.hr/islandora/object/grf:2805


 
 

UNIVERSITY OF ZAGREB 
FACULTY OF GRAPHIC ARTS 

 
 
 
 
 
 
 
 
 
 

NIKOLA FILO 
 
 
 
 
 
 

ADJUSTMENT OF VISUAL 
INFORMATION FOR VISUALLY 

IMPAIRED PEOPLE 
 
 
 
 
 

MASTER THESIS 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zagreb, 2014 



 
 

 
 
 
 
 
 
 
 
 

NIKOLA FILO 
 
 
 
 

ADJUSTMENT OF VISUAL 
INFORMATION FOR VISUALLY 

IMPAIRED PEOPLE 
 
 
 
 

MASTER THESIS 
 
 
 
 
 

 
 

 Mentor:                        Student: 
Prof. dr. sc., Lidija Mandić  
Co-mentor: 
Prof. Guillermo Botella Juan 
Prof. Carlos Garcia Sanchez 

Nikola Filo 

 
Zagreb, 2014



 
 

Abstract 

Visual impairment is a common eye disease that can occurs at any age. There are 

five main impairments but also a lot of different subtypes of impairments. Visual 

impairment could happen because some kind of ill in the eye, therefore retina is 

damaged and eye can’t function properly. In the most cases, those impairments can 

be enhanced with some medical aids and nowadays scientists trying to develop 

medical software’s that will help even better. 

Technology is growing fast and it is possible to develop enhancement software that 

can test some low vision diseases. Software’s can show how visual impaired people 

see which will be shown with foveal algorithm and also tested. With that software it is 

understandable how to design enhancement software’s to enhance vision of visual 

impaired people. In this master thesis is developed edge detector similar to Canny 

edge detector which will filter image to binary image with edges. This thesis will also 

give a convolution algorithm which is primitive operation for image processing.  

The aim of this work is to test algorithms for image enhancement with different values 

in the algorithm and to test those algorithms on the different accelerators that could 

be used for medical aids. The results of this research can show advantages and 

disadvantages of equipment that is used and also can indicate how to approach in 

the future work. This paper would provide general understanding of low vision and an 

overview of low vision enhancement approaches that could be still researched in the 

future. 

 

Keywords 

Visually impaired, retina, enhancement algorithm, edge detector, hardware 

implementation  

  



 
 

 

CONTENTS 
Abstract ...................................................................................................................... 1 

Keywords .................................................................................................................... 1 

1. Introduction ....................................................................................................... 1 

1. 1. Vision sight and anatomy of the human eye .................................................. 1 

2. 1. Retina ............................................................................................................ 2 

3. 1. Low vision diseases ....................................................................................... 7 

4. 1. OpenCL ....................................................................................................... 10 

4. 1. 1. OpenCL specifications ............................................................................. 14 

4. 1. 2. Platform model ......................................................................................... 14 

4. 1. 3. Execution model ....................................................................................... 15 

4. 1. 4. Memory model ......................................................................................... 16 

2. State of the art ................................................................................................ 18 

1. 2. Enhancement algorithms ............................................................................. 18 

1. 2. 1. Canny edge detector ................................................................................ 18 

1. 2. 2. Sobel operator .......................................................................................... 20 

1. 2. 3. TRON algorithm ....................................................................................... 20 

1. 2. 4. Cartoonization .......................................................................................... 21 

1. 2. 5. Edge overlaying algorithm ........................................................................ 22 

2. 2. Macular degeneration .................................................................................. 23 

2. 2. 1. „Wet“ and „dry“ form of macular degeneration ......................................... 25 

2. 2. 2. Diagnosis of AMD .................................................................................... 27 

2. 2. 3. Treatments for macular degeneration ...................................................... 28 

3. Methodology ................................................................................................... 30 



 
 

1. 3. Software methodology ................................................................................. 30 

2. 3. Hardware methodology ............................................................................... 35 

2. 3. 1. Edge detector ........................................................................................... 35 

2. 3. 2. Convolution .............................................................................................. 42 

2. 3. 3. Simulating foveal vision ............................................................................ 44 

4. Results ............................................................................................................ 49 

1. 4. Comparison and critical evaluation .............................................................. 49 

1. 4. 1. Software implementation .......................................................................... 49 

1. 4. 2. Hardware implementation ........................................................................ 53 

5. Conclusion ...................................................................................................... 66 

6. Future work ..................................................................................................... 67 

7. Bibliography .................................................................................................... 68 

 



1 
 
 

1.  Introduction 

1. 1.  Vision sight and anatomy of the human eye 

There are around 124 million people suffering from some form of low vision disability. 

The eye is the most important function of human body, which provides us over 90% 

of visual information from environment during the day. Other senses provide us the 

remaining 10% of information. The human eye is a steam organ that acts similar to 

cameras: the transparent front part of the eye refracts light rays projecting them into 

a less and inverted image on the photosensitive retina. Normal vision is shown in 

Figure 1. Retina has specialized nerve cells that perform conversion into electrical 

nerve impulses that allows conscious perception of light, vision which among other 

things allows us to distinguish colour and depth perception. The human eye has a 

viewing angle of 200˚ and can recognize 10 million different colors.  

Every eye runs three pairs of different eye muscles: two pairs of flat and pair of 

oblique muscles. The eyeball is movable around all three axes and has three 

envelopes. The external form whitish - transparent sclera and transparent cornea. 

The sclera gives the eye a certain firmness and shape. Next to external eye muscles 

(the second of their grips on the walls of the eye socket) is flat and low pitched the 

connective ring around the optic nerve in the top of the eye socket, while the upper 

oblique muscle attaches to the upper wall of the eye socket bone). 

 

Figure 1. Normal vision 

  



2 
 
 

The light entering the eye through the iris and the pupil, shown in Figure 2, its 

focused by the cornea and the crystalline lens onto the retina in the region of the 

macula, its most sensitive part being the fovea, which is the spot of the sharpest 

vision. The photon energy of the incoming light is converted by retina into electrical 

activity and is transferred to the optic disc then along the optic nerve to the brain. 

Fibres from fovea to the optic disc carry electric signal and it's called Henle fibres in 

the vicinity of the fovea. The eye gathers light and then transforms that light into 

visual information also known as „image“. The eye has lenses to focus the incoming 

light. It is similar to the camera focusing light onto the film to present a picture, in the 

same way the eye focuses light onto defined layer of cells, which is called retina, to 

produce an image. [1] 

 

Figure 2. Anatomy of the human eye 

2. 1.  Retina 

The retina is light-sensitive layer of tissue, which is located in the inner surface of the 

eye. The optics of the eye create an image of the visual world on the retina trough 

the cornea and lens, which serves much the same function as the film in a camera. 

When light comes to the retina initiates a cascade of chemical and electrical events 

that ultimately trigger nerve impulses. These impulses are sent to various visual 

centres of the brain trough the fibres of the optic nerve. In the embryonic 

development, the retina and the optic nerve appear as outgrowths of the developing 



3 
 
 

brain. The retina is considered part of the central nervous system and is a brain 

tissue. This is a layered structure with couple of layers of neurons that are connected 

by synapses. The photoreceptor cells are the only neurons that are directly sensitive 

to the light, the rods and cones. Rods function in dim light and provide black-white 

vision. Cones are in charge of daytime vision and the perception of colour. A third, 

rare type of photoreceptor is photosensitive ganglion cell, is important to reflexive 

responses to bright daylight.  

Structure of the retina is divided into ten distinct layers. From closest to the front 

exterior of head towards the interior and back of the head: 

1. Inner limiting membrane 

2. Nerve fibre layer 

3. Ganglion cell layer 

4. Inner plexiform layer 

5. Inner nuclear layer 

6. Outer plexiform layer 

7. Outer plexiform layer 

8. Outer nuclear layer 

9. External limiting membrane 

10. Photoreceptor layer 

11. Retinal pigment epithelium 

 

These structure can be simplified into four main processing stages: photoreception, 

transmission to bipolar cells, transmission to ganglion cells which contain 

photoreceptors, the photosensitive ganglion cells and last one, transmission along 

the optic nerve. In every synaptic stage there are laterally connecting horizontal and 

amacrine cells. The optic nerve is a central tract of many axons of ganglion cells 

connecting primarily to the lateral geniculate body, a visual change station in the 

diencephalon (the rear of the forebrain). It also projects to the superior colliculus, the 

suprachiasmatic nucleus, and the nucleus of the optic tract. It passes through the 

other layers creating the Optic disk in primates. 



4 
 
 

Adult humans have the entire retina approximately 72% of a sphere and about 22 

mm in diameter. The retina contains about 7 million cones and 75 to 150 million rods. 

The optic disk or “the blind spot” because of it lacks photoreceptors is located at the 

optic papilla, zone where the optic nerve fibres leave the eye. That appears as an 

oval white area of 3 mm2. Next to the optic disk is the macula. In his centre is the 

fovea, which is in charge of sharp central vision and is less sensitive to light because 

of its lack of rods. [18] 

The retina is around 0.5 mm thick and has three layers of nerve cells and two of 

synapses, including the unique ribbon synapses. The optic nerve provides the 

ganglion cell axons to the brain and the blood vessels that open into the retina. The 

ganglion cells are in the retina while the photoreceptive cells outside. Light must first 

pass around the ganglion cells and trough the thickness of the retina before reaching 

the rods and cones. The white blood cells in front of the photoreceptors in the 

capillaries can be perceived as bright moving dots when looking into blue light. This 

is known as Scheerer’s phenomenon. 

The retina illustrates the information stream in different layers, which effect to 

different cells. The retina includes horizontal and vertical pathways. In horizontal 

pathway, horizontal cells and amacrine cells can connect and disconnect the 

horizontal connection among cells to adjust range of receptive field and intensity of 

response. The horizontal cells and amacrine cells have many subtypes. Amacrine 

cells have for example at least 22 different types, their functions are also motion 

detection, brightness adjustment and texture recognition. In the vertical pathway, the 

optical signal is tested and converted to electronic signal trough the photoreceptor 

layer, after is passed to the bipolar cell and further transmitted to the ganglion cell 

layer in which each layer contains a different subtypes and handle with different 

information. The retina is also divided into another two categories: on-pathway and 

off-pathway, which deal with brightness, increase and decrease. [2] 

Retina has several layers, photoreceptor layer, horizontal cells, bipolar cells, 

amacrine cells and ganglion cells. 

Photoreceptor layer test optical signals and converts the optical information into 

electronic signals. Feature of the photoreceptor layer is the unequally distribution for 



5 
 
 

instance high density in central area and low density in peripheral area. This 

distribution allow centre of the retina to see details and for peripheral area to see 

contour information and be able to get to know surroundings. This distribution will not 

recognize visual accuracy, because muscles of an eyeball are flexible and powerful 

and they focus on an interesting subject. This characteristic gives the retina a quick 

look to the interesting information, while reduces processing workload. This example 

shows how retina can balance between accuracy and real time. Photoreceptor layer 

have a complex process, there are three steps. First, allocation of various 

photoreceptors is generated. Secondly, according to the input RGB visual 

information, wavelength is calculated. Wavelength is the main reason that 

photoreceptors discharge. In the end, strength of photoreceptors is calculated based 

on photoreceptor-wavelength sensitivity curve.  

Horizontal cells and bipolar cells are related to each other. Photoreceptor directly 

transfer centre signals to bipolar cells, while horizontal cells collect signals in a large 

range and get feedback to bipolar to create surrounding. For this field, centre-

surrounding, R. W. Rodieck [1965] raised “Difference of Gaussian” (DOG) model. 

Model can simulate the centre-surrounding receptive field. Model is based on two-

dimensional DOG. Experiments show that when given light covers the certain range 

of a ganglion cell receptive field, the ganglion cell may have weak response, because 

at the time, input from photoreceptor and inhibitory input from horizontal are equal. 

The integral of DOG function in continuous region can meet requirements that the 

central reaction equals to surrounding reaction. In isolated case, each layer cells are 

generated according to the real physiological data, it is difficult to provide that central 

response always equals to surrounding response because of random influence. A 

new weight assignment method for each cell to make the central response and the 

surrounding response equal to each other is proposed. The weight setting 

mechanism should have three basic requirements: 

• The weight of cell should be same to total number of cells in the region that 

is concerned. The more the total amount of cells is, the smaller the weight 

of each cell is.  

• The weight of cell has to same as location of cells.  



6 
 
 

• The weight settings mechanism can always provide that the central area 

equals to the surrounding area.  

 

Amacrine cells have a significant task in visual signals adjustment. Dark vision, 

motion detection or non-classical sensitive field formation are fundamental to 

amacrine cells. AII amacrine cells have largest number and are considered as the 

most significant type in all amacrine types. There are three main input sources to AII. 

First of the input is from rod bipolar which accounts for 30% of the all input. Second 

major input, which accounts for about 20% of input, is from gap hub between cone 

bipolar cells and amacrine cells. The gap hub is electrical synaptic connections 

through which cone bipolar and AII cells can swap information. The rest of input 

information’s occur from electrical synapses among AII connections. The more the 

AII cell connects to each other, the more ganglion cell receptive field will cover.  

After a different processing in the horizontal level and vertical level, visual information 

in the end is hand over to the ganglion cell layer. As the final layer in retina, ganglion 

cell is responsible for gathering all information and transferring information to brain. 

When test optical signal, there are more than 100 million photoreceptor cells 

included, but when transferring information to the brain, there are only 1 million 

ganglion output, in which the productivity of visual information gathering, 

representation affect, accuracy and real-time. There are four types of ganglion cells 

that allow on and off taxonomy and P and M taxonomy. P type and M type of 

ganglion cells are based on morphology. All P type are smaller and have smaller 

sensitive field than M type ganglion cells in the retina. The on-center P type and on-

center M type cells all receive OnConeBipolar output, which means they may have 

same pretending function, but their receptive field radius is way different. The 

receptive field radius is set according to physiological data. [2]. 

 

  



7 
 
 

3. 1.  Low vision diseases 

There are many different low vision diseases and damages on the eye. The main 

preoccupation in this paper will be Macular Degeneration, which will be described in 

later section because of many characteristics. Here will be described other, also very 

common diseases. Cataract is an eye disease when normal clear lens converts to 

cloudy or opaque and causes a decrease in vision in general Figure 3. The lens is 

focused on the back of the eye, so images appear normal and clear. Clouding effect 

of this lens is because of cataract disorder. Cataract is a disease that appears during 

the years, and is common among elderly people, but sometimes it can effect earlier 

and can be rapid. Sometimes both eyes are affected but that is not always the case. 

The cause of cataract is not known but some characteristics of this disease are 

known. Cataract appears when changes are made in the protein structures within the 

lens that occur over many years. Sometimes it is presented at birth or in early 

childhood as a result of genes from parents. Serious cause of cataract also can be 

eye trauma, surgery of the eye or intraocular inflammation. These causes can very 

rapidly develop this eye disorder. Other effects that can also have negative influence 

to eye can be ultraviolet light exposure, diabetes, smoking or use of specific 

medications. 

 

Figure 3. Cataract vision 

  



8 
 
 

 

Glaucoma is a disease of the major nerve of vision. Major nerve is also known as 

optic nerve. The optic nerve is transmitting light generated nerve impulses from retina 

to the brain. The brain recognizes those electrical signals as vision. This disease is 

characterized as progressive damage to optic nerves that are in charge of peripheral 

vision, as shown in Figure 4. If glaucoma is not treated it can proceed to loss of 

central vision or blindness. Glaucoma is connected with elevated pressure in the eye 

but not always. In general, this is raised eye pressure that leads to vision loss. 

Sometimes glaucoma can appear at normal eye pressure but this could happen 

because of poor regulation of blood flow into the optic nerve. 

 

Figure 4. Claucoma vision 

A retinal detachment is a disease that has separation of the retina from its 

attachments to the underlying tissue within the eye. In most cases this is the result of 

retinal breaks, hole or tear. Those breaks may occur when the vitreous gel pulls 

loose or separates from its attachment to the retina, this usually happens on the 

peripheral parts of the retina. Two-thirds of the eye is filled with vitreous, which is a 

clear gel and occupies the space in front of the retina. As the vitreous gel pulls loose, 

it will sometimes exert traction on the retina, and if the retina is weak, she will tear. 

Most of the breaks on the retina are not result of injury. Those tears are sometimes 

accompanied by bleeding if a retinal blood vessel is included in the tears. Lots of 

people develop separation of the vitreous from the retina as they get older but just a 

small percentage of separations result in retinal tears. Below is shown how people 

with this disease see Figure 5. 



9 
 
 

 

Figure 5. Retinal detachment vision 

Diabetic retinopathy is shown in Figure 6, is a disease that damages retina and it is 

caused by diabetes, which damages the tiny blood vessels in the back of the eye. In 

early stages of disease there are no visual symptoms. When the disease progresses 

it is proliferative stage. New blood vessels, which are fragile, grow along the retina 

and inside of the eye, gel like vitreous that fills the inside of the eye. If this form is not 

treated well, those blood vessels will bleed, blurry vision will be performed and it will 

destroy the retina. Every patient with diabetes type one or two has risk of diabetic 

retinopathy. Swelling in the portion of the eye called macular edema, it is a part of the 

eye most sensitive to light, and it makes it hard to do things like read or drive. When 

new blood vessels form at the back of the eye, they bleed and blur vision. That type 

of bleeds have tendency to happen often during the sleep. There are no warning 

signs for diabetic retinopathy. Diagnosis of this disease can be informed during the 

normal eye exam, which includes visual acuity test, ophthalmoscopy, tonometry, and 

pupil examination. Treatment for this disease is laser surgery, which stop the edema, 

and bleeds in the eye. Vitrectomy is another treatment, which removes blood from 

the back of the eye. For patients with diabetes it is recommended to have eye 

examinations at least once a year. [3] 



10 
 
 

 

Figure 6. Diabetic retinopathy vision 

4. 1.  OpenCL 

In this research OpenCL programming language was used, it is used to implement 

our algorithms to four different accelerators for that reason in the next section 

OpenCL programming language is described. OpenCL is free and public standard 

that everyone can download, all the development tools that programmer may need. 

This is language standard with which programmers can write applications that will be 

running on the some sort of hardware. For example, CPU, GPU, etc. Programmers 

can run the code and don’t have concern which company designed the processor or 

how many cores it contains. The code will compile and execute on Intel’s Core 

processors, Nvidia’s Fermi processors, IMB’s Cell Broadband Engine or even AMD’s 

Fusion processors. All of these processors have same function in personal computer 

but not everyone is programmed in the same way. Each of these devices has its own 

instruction set, and before OpenCL, programmer was needed to know three or more 

different languages to be able to program those devices. Therefore Apple Inc. which 

uses different devices from different vendors in their own products and their 

programmers need to know multiple languages. For easier programming those 

devices they starting to develop new language standard called OpenCL. In June 

2008 Apple and other companies formed OpenCL Working Group in Khronos Group, 

a consortium of companies whose aim is to advance graphic and graphical media, 

which had task to develop new language standard. First version called OpenCL 1.0 is 

released in November 2008. [4] 



11 
 
 

 

OpenCL is not so new or different, it is based on C/C++, but improvements are 

defined like a set of data types, data structures and functions. It also has three main 

advantages comparison with C or C++ languages. It has portability which is probably 

main advantage of this language, OpenCL has suitable motto for this, “Write once, 

run on anything” what will say every vendor that provides hardware it will also provide 

the tool that compile OpenCL code to run on the hardware. In general this means 

that programmers can write the code and run it on any compliant device, no matter 

what device is this, multicore processor or graphic card. This is big advantage over 

regular high-performance computing, where programmer need to know vendor-

specific language to program this specific hardware. This could target multiple 

devices at once and those devices don’t have to be from same vendor or have to 

have same architecture, just have to be OpenCL - compliant and everything works 

perfectly. Those functions are not possible to run in C/C++ programming, where is 

only available to target one device at the time. For example, if user uses multicore 

processor from AMD and graphics card from Nvidia, normally programmer wouldn’t 

be able to target both systems at once because each of those requires a separate 

compiler and linker, but with OpenCL program programmer can develop executable 

code for both devices. In that case programmer can unify hardware to perform 

certain task only with single program and if he wants to add more devices, he doesn’t 

have to rewrite the code, just need to rebuild the program.  

 

Standardized vector processing is another advantage of OpenCL, the term vector in 

this case is used in one of three different ways. Physical or geometric vector are 

used in graphics to identify directions. Mathematical vector are specified as two-

dimensional collections of elements, called a matrix. Computational vector is data 

structure that has multiple elements of same data type. Computational vectors are 

very important to OpenCL because high-performance processors can operate on 

multiple values at once. Every processor nowadays are able to process vectors, but 

C/C++ don’t define basic vector data types because vector instructions are usually 

vendor-specific. NVidia devices use PTX instructions, IBM devices require AltiVec 



12 
 
 

instructions and Intel processors use SSE extensions to process vectors and those 

instructions don’t have anything in common. OpenCL code can unite vector habits 

and run them on compliant processor. When applications are complied, Nvidia’s 

compiler will produce PTX instructions, IMB compiler will produce AltiVec instructions 

and so on. With this kind of programming in OpenCL, high - performance applications 

will be available on multiple platforms.  

 

Parallel programming is the third big advantage in OpenCL. This advantage is used 

when programmers compute tasks to multiple processing elements to be performed 

at the same time. In OpenCL language those tasks are called kernels. Each kernel is 

specially coded function that will execute one or more compliant devices. Those 

kernels are sent to device or devices by host application, which is basic C/C++ 

application that runs on the user development system. For example, host sends 

kernels to a single device, like the GPU on the computer’s graphic card, but also the 

same CPU on which the host application is running can execute them. To manage 

connected devices, host applications use container called context which is shown in 

Figure 7., this shows how host interact with kernel and device. In general this works 

pretty easy, from kernel container called a program, host selects a function to create 

a kernel, and then he associates the kernel with argument data and sends it to a 

command queue. This is the mechanism through which the host tells devices what to 

do. Once the kernel is enqueued, the device can execute this particular function. In 

this way applications can configure different devices to execute different tasks and 

every task can operate on different data. 



13 
 
 

 

Figure 7. Parallel programming [5] 

OpenCL is developed by Apple Inc., which has trademark rights and have initial 

collaboration with AMD, IBM, Qualcomm, Intel and Nvidia. In June 2008 Apple 

submitted initial proposal to the Khronos Group when is formed Khronos Compute 

Working Group with representatives from CPU, GPU, embedded-processor and 

software companies. The group worked for five months to finish the technical details 

for OpenCL 1.0. This version of OpenCL is released for public in December 2008. 

OpenCL 1.0 was released with Mac OS X Snow Leopard, which further extends 

support for hardware with OpenCL. This software lets any application to use of GPU 

computing power previously available only to graphics applications. OpenCL is based 

on the C programming language and it is proposed as an open standard. Later on 

AMD have decided to support OpenCL instead of developing own language. Nvidia 

announced full support for the OpenCL 1.0 specification to its GPU Computing 

Toolkit. In October 2009, IBM released its first OpenCL implementation. [5] 

After support of other companies OpenCL 1.1 is developed in June 2010, which 

contains significant functionality for enhanced parallel programming flexibility, 

functionality and performance. In this version is included, new data types including 

three-component vectors and additional image formats, handling commands from 

multiple host threads and processing buffers across multiple devices, operations on 

regions of a buffer including, read, write and copy of 1D, 2D or 3D rectangular 



14 
 
 

regions, enhanced use of events to drive and control command execution. Additional 

OpenCL built-in C functions such as integer clamp, shuffle and asynchronous strided 

copies also is improved efficient sharing of images and buffers by linking OpenCL 

and OpenGL events. In November 2011 the Khronos Group has released Open CL 

1.2 specification, which added significant functionality over previous versions in way 

of performance and features for parallel programming. Features that are included are 

device partitioning, separate compilation and linking of objects, enhanced image 

support, built-in kernels which means custom devices that contain specific unique 

functionality are now integrated more closely into the OpenCL framework. Included 

features are also DirectX functionality, which allows DX9 media surface sharing for 

efficient sharing between OpenCL and DX9 or DXVA media surfaces. The Khronos 

Group announced and release OpenCL 2.0 specification in November 2013. OpenCL 

2.0 include updates and additions like shared virtual memory, nested parallelism, 

generic address space, C11 atomics, pipes, Android Installable Client Driver 

Extensions, industry support etc. 

4. 1. 1. OpenCL specifications  

OpenCl specifications are defined in four main parts, called models. First model is 

Platform model, which specifies how many of processors (the host) are capable of 

executing OpenCL code (the device). This model defines how are OpenCL functions 

(called kernels) executed on the devices. Second model is Execution model, which 

defines environment, which is configured on the host and how kernels are executed 

on the specific device. This model includes settings that OpenCL provides for host-

device interaction. Third model called Memory model, defines memory hierarchy that 

kernels use regardless of the actual memory architecture. Fourth, Programming 

model defines how the assembled model is mapped to physical hardware. 

4. 1. 2. Platform model 

Platform model uses a single host that coordinates execution on devices. Those 

platforms are specific for implementations on different vendors of the OpenCL 

application programming interface (API). Thus, devices are targeted to vendors that 

can interact with them. When programmers are writing an OpenCL code, in platform 

model they present an abstract device architecture. The platform model defines a 



15 
 
 

device as an array of compute units where every compute unit is functionally 

independent from the rest because of scalability of this model. Those compute units 

are divided into processing element which is shown in Figure 8. 

 

Figure 8. Platform model [4] 

4. 1. 3. Execution model 

This model has environment that configure the context on the host. Command and 

data has to be configured to the kernel that is going to be executed on a device. In 

this language, a context is an container that exists on the host, it coordinates how 

host-device interaction communicate, manage the memory object that is available to 

the device, also keep track of the program and kernel that is created for device. In 

the context, has to be used properties argument to restrict the environment of the 

context. This may provide a specific platform or enable graphics operations or even 

enable other parameters in the future. If context is limited, then programmer can use 

context for multiple platforms and use system that contains several vendors. When 

creating a context OpenCL allows user callbacks that have to be provided so that can 

be used to report error information. In this language there is a function that creates a 

context that automatically includes all devices like CPU, GPU, etc., after creating a 

context there is a function that present number of devices and structure of devices. 

All those functions and code writing to set context is very tedious, but after 

programmer write these steps once, he can use it for almost every project. 



16 
 
 

4. 1. 4. Memory model 

Generally, memory systems are different between computing platforms. Nowadays 

all CPUs support automatic caching, but many GPUs do not. To support code 

portability, OpenCL defines summary memory model so that programmers can target 

when writing code and vendors can map to memory hardware. Those memory 

spaces are shown in Figure 9 below. 

 

Figure 9. Memory spaces [4] 

In OpenCL programs these memory spaces are relevant. Each of those spaces has 

associated keywords and it is used to specify where a variable should be created or 

where is the place for certain data. Memory model is divided into four levels of 

memory. Global memory is like main memory on a CPU-based host, it is visible to all 

compute units on the device. Every time when data is transferred from host to the 

device, the data will take place in global memory and conversely. Constant memory 

is designed for read-only data type but also for data where access to elements is 

simultaneously by all work-items.  If values never change, then those types also get 

into this category. This model is modelled as part of global memory. When memory 

object is transferred to global memory can be specified as constant. Local memory is 

memory which address space is unique for compute device. Local memory is 

commonly implemented as on-chip memory. It is modelled as being shared by a 



17 
 
 

workgroup. These memories have much shorter latency and much higher bandwidth 

than global memory. Private memory is private as the name says, it is unique to an 

individual work-item. Local variables and nonpointer kernel arguments are private by 

default. These variables are usually mapped to registers but private arrays and 

spilled registers are mapped to an off-chip memory. The memory spaces in this 

language are similar to the models of GPUs nowadays. Detailed relationship 

between OpenCL memory spaces and AMD 6970 GPU is shown in figure 10. [4] 

 

Figure 10. Comparison between OpenCL memory spaces and AMD 6970 GPU [4] 

OpenCL is very powerful toolset for writing parallel programs, which can be run on 

high-performance processors. If programmer uses OpenCL, he doesn’t have to know 

any other programming language because of OpenCL-compliant hardware. 

Programmers can write the code once and run it on any compliant hardware. For 

high-performance computing, portability and parallel programming are big 

advantages which OpenCL language has. 

  



18 
 
 

2.  State of the art 

1. 2.  Enhancement algorithms 

During the years, many researchers tried to develop some enhancement algorithms 

for visually impaired people to improve their sight. Further below several of 

enhancements are described. Every algorithm have same idea, this is detecting 

edges in the grayscale image. If algorithm read and process coloured image, first 

task is to convert that image into grayscale colours, then he extracting edges from 

the image, because edges are relevant information’s in the image. In our work, we 

developed our algorithm for edge detection which is similar to already developed one 

called „Canny edge detector“. Visual impairment is wide range disease for that 

reason there is no general algorithm for image enhancement. Every form of visual 

impairment have its own disadvantages because of that, there is a lot of different 

algorithms for different forms of diseases. All of them have their own purpose for 

some form of low vision disease. They are described here to better understand our 

developed algorithm. 

1. 2. 1. Canny edge detector 

Edge detection is a set of mathematical methods which are finding points in a digital 

image where the image brightness changes sharply. The points at which brightness 

changes sharply are organized into a set of curved line segments called edges. This 

tool is fundamental in image processing and computer vision. In 1986. John F. Canny 

developed multi-stage algorithm to detect a wide range of edges in images called 

Canny edge detector. Canny's edge detector has four steps. 

 

• Applying the Gaussian blur to clear the noise from the raw image. Gaussian 

filter is an 5x5 matrice which have constant σ = 1.4. After applying Gaussian filter 

image is slightly blurred version of the original image without single noise. 



19 
 
 

B =
1

159

[
 
 
 
 
2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 5
2 4 5 4 2]

 
 
 
 

× 𝐴 (1) 

 

• Finding the intensity gradient of the image with four filters to detect horizontal, 

vertical and diagonal edges in the blurred image. 

G =  √𝐺𝑥2 + 𝐺𝑦2  (2) 

θ = atan 2 (𝐺𝑦 , 𝐺𝑥) (3) 

 

• Non-maximum suppression determines if the gradient magnitude assumes a 

local maximum in the gradient direction. The algorithm categorizes the continuous 

gradient directions into a small set of discrete directions, and then moves a 3x3 filter 

over the output of the previous step. Every pixel suppresses the edge strength of the 

center pixel if its magnitude is not greater than the magnitude of the two neighbors in 

the gradient direction. 

• Thresholding with hysteresis requires high and low thresholds. First is high 

threshold applied, he marks out the edges which are genuine. From that edges can 

be traced through the image. While tracing an edge, lower threshold is applied he 

allow to trace faint sections of edge as long as he find starting point. When this 

process is done, algorithm give binary image where each pixel is marked as edge 

pixel or a non-edge pixel. [19] 



20 
 
 

 

Figure 11. Original image (left side) and filtered through "Canny edge detector" (right side) 

1. 2. 2. Sobel operator 

Another edge detection algorithm called „Sobel operator“ or sometimes called „Sobel 

Filter“ also extract edges from the image. Irwin Sobel used „Isotropic 3x3 Image 

Gradient Operator“ which is convolved with original image to calculate 

approximations of the derivatives.  

 

Figure 12. Original image (left side) and filtered through Sobel operator (right side) 

1. 2. 3. TRON algorithm 

Tinted Reduced Outlined Nature (TRON) is an algorithm that creates an edge-like 

image and increases the contrast between objects. By this algorithm contrast is 

increased by highlighting the edges of the moving objects and the edges between 

objects. Algorithm is performed in three main steps: 

 

• Simplification of the scene, using anisotropic filtering 

• Extraction of the significant spatial derivatives, using a hierarchy method 

• Boosting the original scene using the simplified spatial derivatives. 



21 
 
 

 

Important step before performing edge extraction using spatial derivatives is to 

simplificate the image and not to extract high frequency noise and textures. For this 

purpose is used non-linear anisotropic smoothing technique which will eliminate 

noise and low importance textures and will avoid smoothing object boundaries. This 

is common process, which smooth the image and maintain the significant edges. 

When the image is simplificated, next step is to obtain gradient map. It is used 

algorithm described by Fleck [7]. This algorithm is based on modified Canny filter [8]. 

Algorithm use simple masks and compute the first derivative in four main directions, 

horizontal, vertical and two diagonal.  The final stage in this algorithm is to rescale 

the original image thus to a weighting function based on the gradient map in the 

previous stage. This gradient map is normalized in dynamic range between 0:1 after 

which is defined threshold value, which will raise all pixels to defined threshold. To 

get TRON image (Figure 10(c)), the original image (Figure 10(a)) is multiplied with 

weighting function. In comparison with basic edge detection (Figure 10(b)), 

advantage of this method is to get more robust against noise and textures, he also 

keeps some of the chromatic information of the visual scene, with threshold in this 

algorithm is possible to increase or decrease the color information. [6] 

 

Figure 13. TRON enhancement 

1. 2. 4. Cartoonization 

Cartoonization algorithm is a technique that creates stylized images. The viewer can 

recognize the shapes and see them as shadows and texture details. This algorithm is 

presented by Walid Al-Atabany [6], and main advantage of this technique is that 

improve the contrast of visually important characteristics using simplification and 

reducing contrast in low contrast fields, also increasing contrast in high contrast 

fields. Their version of that algorithm has four main steps: 



22 
 
 

 

 Simplification of the image with anisotropic filtering 

 Calculating the spatial derivatives of the image 

 Quantization of the colours of the simplified image to create cartoon like 

images 

 Combining the quantized image with the negative of the gradient map 

 

The algorithm starts with smoothing the image using the anisotropic diffusion 

described by Perona and Malik [1991]. The anisotropic diffusion is used for image by 

converting it to the “YCbCr” colour space. The “Y” channel is for the intensity, that 

layer is diffused. After diffusion, image is converted back to RGB colour space. The 

gradient image calculated as given in equations and it is normalized between 0 and 

1. Then are defined two threshold values and they set all pixels of normalized 

gradient image below minimum threshold to 0 and all the pixels above the maximum 

threshold are set to 1. To make paint-like image effect on the original image they 

restrict the luminance Y channel of the original image into bins. The full description of 

this method is previously described by Winnemoller [9]. They increase the visual 

definition of high contrast fields in the image by combining the negative of the 

corresponding extracted spatial derivatives. This negative gradient map coat gives a 

significant edge enhancement as shown in Figure 12(a). Figure 12(b) shows the 

cartoonized image without colour quantization and Figure 12(c) shows the 

Cartoonization with colour quantization effect. 

 

Figure 14. Cartoonization enhancement 

1. 2. 5. Edge overlaying algorithm 

Edge overlaying algorithm also described by Walid Al-Atabany use the same 

mathematics as Cartoonization enhancement. In this algorithm they recolor and 



23 
 
 

overlay gradient map onto original image or a simplified interpretation of an original 

image. In such way contrast should be improved compared to the original. This 

algorithm is compared with one described by Wolffsohm [8] which he tested on 

patients while they watching television. Only difference is that Wolffsohn extracted 

the contour map with and without Gaussian smoothing. With smoothing, the image is 

little bit blurred compared to anisotropic simplification and without, results in the 

highlighting of many unwanted gradients as is shown in Figure 13(b-d). In addition to 

Wolffsohn, developed algorithm use 3 x 3 kernel, which make it hard to highlight the 

fundamental contours. In Al-Atabany algorithm they apply a simplification processing 

step to extract only the fundamental spatial derivatives. They use a pyramidal 

approach to get the spatial derivatives across a range of spatial frequencies. In 

Figure 13(e-f) are shown results of the edge overlaying on the original image without 

smoothing and with Gaussian smoothing. Figure 13(g-h) shows the overlaying on the 

original and cartoon images when using anisotropic diffusion filter. [6] 

 

Figure 15. Edge overlaying enhancement 

2. 2.  Macular degeneration 

Main preoccupation in this thesis is macular degeneration, which is painless eye 

condition in which people have loss of central vision which is shown in Figure 14 



24 
 
 

because the retina is weakened and does not function adequately. The retina is 

located in the back of the eye and is the light sensitive tissue, like the film in camera. 

The retina records the images we see and sends them through optic nerves from eye 

to the brain. It converts light images into electrical impulses through a chemical 

reaction. Those signals go to the brain, and then we interpret visual information and 

relate them to the rest of environment. From the other side, we have macula, which is 

a small area of the retina located in the central portion. The macula is in charge of 

central vision and provides the point of focus. The macula provides us vision of fine 

detail in direct line of sight. Because of macula we have clear vision that allows us to 

read, drive a bike and recognize colours or even faces. The non-macular areas of the 

retina provide us side vision and good night vision. 

 

Figure 16. Macular degeneration vision 

The most common type of macular degeneration is age-related macular 

degeneration although there are many types of it. Macular degeneration is related 

with aging. With time it destroys sharp central vision that we need to see clearly and 

that we need to do normal daily tasks. In most cases macular degeneration 

progresses slowly and people notice little change in vision. In other cases, the 

disease progresses faster and some people may have loss of vision in both eyes. 

Macular degeneration or better known as age-related macular degeneration (AMD) is 

more often among older people, 60 years of age and older. AMD usually affects both 

eyes, although this is not always the case. [10] 



25 
 
 

 

2. 2. 1. „Wet“ and „dry“ form of macular degeneration  

Age related macular degeneration has two forms shown in figure 3. „Wet“ AMD is 

aggressive type, it is less common and affects faster. „Dry“ AMD is more often but 

progress of vision loss is slower. Wet age related macular degeneration is when 

abnormal blood vessels grow from the choroid under and into the macular area of the 

retina. These blood vessels are very fragile and often they leak blood and fluid. 

Those fluids raise position of the macula from normal place and interfere with the 

retina's main function which causes blur or loss of central vision. When that happens, 

vision loss may be very fast and severe. Wet macular degeneration does not have 

stages like dry AMD. The wet form leads to more vision loss than the dry form. 

People who have dry form of AMD are probably at risk of the disease progressing to 

the wet form. The dry form can advance and cause vision loss without turning into 

the wet form. Nowadays there is no way to predict if or when the dry form will 

progress into wet form. [16] 

 

Figure 17. Difference between "Wet" and "Dry" AMD 

Age related macular degeneration in dry form has infected the light sensitive cells, 

which slowly break down. When the macula is less functional central vision 

diminishes. AMD in dry form is more often only in one eye at the beginning, later it 

can also affect the other eye. Dry AMD has three stages, which are called early, 

intermediate and advanced. Every of these stages can occur in one or both eyes. 

Those with early stage of AMD have several small drusen or a few medium sized 

drusen and at this point, there are no symptoms and no vision loss. In intermediate 

stage people have medium sized drusen or larger drusens. In this stage people see a 

blurred spot in central vision, they need more light for reading and other daily tasks. 



26 
 
 

Advance stage of AMD is worst of all because of breakdown of light sensitive cells 

and supporting tissue in retinal area. This loss can cause a very blurred spot in 

central vision. With time that spot may get bigger and darker and at that point it takes 

more of central vision. People with this stage have difficulty reading, recognizing 

faces until they are very close to another person. AMD in the dry form is more 

common than the wet form. In the case of dry form there are no blood vessel, which 

have their fluid or blood leakage into the retina. Dry form of AMD can progress and 

cause vision loss without turning into wet AMD.  [17] 

  



27 
 
 

2. 2. 2. Diagnosis of AMD 

Ophthalmologist can diagnose AMD if he uses eye drops to dilate pupils in eye. 

Dilating the pupils allows him to see the back of the eye better. He can determine the 

presence of AMD using various illuminating and magnifying devices. Usual eye exam 

is also looking at Amsler grid. If a person has AMD, when they are looking at an 

Amsler grid with one eye they may notice wavy lines instead of straight lines. In every 

form of AMD, the ophthalmologist can find decreased visual acuity with saving the 

peripheral vision. The most common macular degeneration early symptom is blurred 

vision. As less cells are able to function, AMD people will see details less clearly in 

front of them, like words in a book. This kind of blurred vision will disappear in 

brighter light. If the loss of these light sensing cells becomes bigger than people may 

see a small black blind spot in centre of their vision. Dry form of AMD symptoms 

develops slowly and they do not include blindness. Nevertheless, those symptoms 

may aggravate daily tasks like reading and driving. Decreased night vision is also 

one of the symptoms, a decrease in the intensity or brightness of colours and in 

general reduce the overall vision.  Dry AMD can affect one or both eyes, if only one 

eye is affected, symptoms may not occur because of a healthy eye. These symptoms 

may also occur in the wet form of age related macular degeneration but the most 

common are straight lines appearing wavy. The reason why this happens is because 

of the leaking fluids, which lift the macula above and disturb the vision. At this point 

larger areas of grey or black dots may appear in central area of vision. There is no 

written cause of AMD, but there are some certain risk factors of development of age 

related macular degeneration. Biggest of all is age, although AMD can occur during 

the middle age. Some studies show that people over age of 60 are at greater risk 

than other groups of people. Also, smoking, obesity, family history of macular 

degeneration, high blood pressure, raised blood cholesterol and others can often 

cause AMD. [10] 

  



28 
 
 

2. 2. 3. Treatments for macular degeneration 

Treatment for wet form of AMD is laser surgery, photodynamic therapy or injections 

into the eye. All of those are treatments but none of them are permanent cure for 

AMD. With all of those treatments AMD may progress despite previous treatments. 

Laser surgery will destroy leaky blood vessels. Laser light is pointed directly on blood 

vessels to destroy them with prevention of further vision loss. Laser surgery is not 

always the best way to treat the eye because sometimes it may also destroy some of 

healthy tissue and vision. Surgery is effective for slowing visual loss if the blood 

vessels are developed away from the fovea. Risk of new blood vessels still stands, 

for that reason the patient may have to treat them more than once. Photodynamic 

therapy uses a drug that is injected into the vein of the arm, and then the light is 

directed into the eye to activate the drug process to the blood vessels into the eye. 

This treatment destroys the blood vessels and decreases progress of vision loss. 

This type of treatment can slow down vision loss, but it is temporary and the patient 

may need another therapy. Injections into the eye treatment developed to stop 

growth of new blood vessels and that revolutionized the treatment of wet AMD. 

Injections treatment will slow down vision loss and some patients can experience 

improvement of vision. Patients with advanced AMD on both eyes can get an implant 

of a telescopic lens into one eye. Telescopic lens is a replacement for natural lens 

and might reduce the peripheral field of vision but also can improve distance and 

close – up central vision. 

 

Dry form of macular degeneration progresses slowly and patients with this form of 

disease are able to live normally, because it often effects one eye more than the 

other. When a patient has diagnosed advanced stage, there is no treatment that can 

prevent further loss of vision but treatment can help to delay the possibility of 

progressing from intermediate to advanced stage of AMD. The National Eye Institute 

had studies that showed if patients take some dose of formulation antioxidants and 

zinc, it significantly reduces the risk of advanced stage of macular degeneration. 

Formulation in antioxidants includes vitamin A, C, E and zinc. This formulation is 

good for intermediate stage but there is no study that also helps early stage of AMD. 



29 
 
 

From the other side, patients can prevent their disease through lifestyle changes. 

These include changing their diet to include more fruits and vegetable, choosing 

healthy nutrition. 

 

Advance form of AMD can cause loss of central vision in both eyes but those patients 

can get around in familiar situations. They can use devices, which can improve their 

vision and allow them to watch television or to read. There is no certain way how to 

prevent developing of AMD but some of bad habits can be prevention. Eating healthy 

food, not smoking, maintaining blood pressure, regular weight and regular exercise 

can help to prevent macular degeneration. [15] 

  



30 
 
 

3.  Methodology  

In this part the methods and strategies used in the experimental part of this master 

thesis will be described. For better comprehension, methods are divided in two 

groups: software and hardware methods. 

 

1. 3.  Software methodology 

This section will present software methods, in this case metrics, used for the 

experimental part of this master thesis. Furthermore, a theoretical approach to 

metrics in general and three methods of metrics will be offered. Metrics methods 

which were used for measuring errors in the experimental part are described in the 

following sections. 

  

The mean squared error (MSE) [12] measures the average of the squares of the 

“errors”, that is, the difference between the estimator and what is estimated. MSE is a 

risk function, corresponding to the expected value of the squared error loss or 

quadratic loss. The difference occurs because of randomness or because the 

estimator doesn’t account for information that could produce a more accurate 

estimate. MSE function is calculated in the following way: 

 MSE =
1

n
∑(Yî − Yi)

2

n

i=1

 (4) 

Second metric used in this master thesis is Peak signal-to-noise ratio (PSNR) [13], 

which is an engineering term for the ration between the maximum possible power of 

a signal and the power of corrupting noise that affects the fidelity of its 

representation. PSNR is commonly used to measure the quality of reconstruction of 

lossy compression codecs. For example image compression, which is used in this 

master thesis, the signal is the original data, and the noise is the error introduced by 

compression. When comparing compression codecs, PSNR is an approximation to 

human perception of reconstruction quality. In general, higher PSNR indicates that 



31 
 
 

the reconstruction is of higher quality. PSNR is most easily defined through the mean 

squared error, which is defined like this: 

PSNR = 10 × log10(
MAXI

2

MSE
) (5) 

Third metric presented in this master thesis is the structural similarity (SSIM) [14] 

index, this is a method for measuring the similarity between two images. SSIM is 

designed to improve on methods like MSE and PSNR, which have proven to be 

inconsistent with human eye perception. SSIM considers image degradation as 

perceived change in structural information. The idea is that structural information 

pixels have strong inter-dependencies especially when they are spatially close. 

These dependencies carry important information about the structure of the objects in 

the visual scene. For that reason, results are decimal values between -1 and 1, and 1 

means two identical images. The SSIM metric is calculated through the equation: 

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μx
2 + μy

2 + c1)(σx
2 + σy

2 + c2)
 (6) 

In the designed algorithm for edge extraction first is applied Gaussian blur which will 

clear the noise from the image and it is not constant, three different filter sizes were 

applied, it starts from 3x3, 5x5 and in the end is 9x9 Gaussian filter. After applying 

different sizes different sigmas from 0.1, 0.5, 1, 2 and 5 were applied. Next step in 

this algorithm was applying of gradient operator for obtaining the gradients intensity 

and direction. Third step is to determine if the pixel is relative candidate for an edge 

than its neighbour. For the last step in the algorithm hysteresis thresholding was 

used, which can find where exactly edges begin and end. Five selected images were 

filtered through the algorithm and compared with golden standard which is human 

eye, in this case. Those images are compared through metrics MSE, PSNR and 

SSIM. All used images are shown below from figure 18 to 22. In those figures are 

shown original image (A), from the right side is shown golden standard (B) which was 

compared in the metrics. Left side below is image filtered through Canny edge 

detector and on the right side below is filtered image through the developed algorithm 



32 
 
 

(D). Aforementioned metrics are used for measuring errors between two images 

below. 

 

Figure 18. A-Original image, B-Golden standard, C-Canny edge detector, D-Developed edge detector 

 

Figure 19. A-Original image, B-Golden standard, C-Canny edge detector, D-Developed edge detector 



33 
 
 

 

Figure 20. A-Original image, B-Golden standard, C-Canny edge detector, D-Developed edge detector 

 

Figure 21. A-Original image, B-Golden standard, C-Canny edge detector, D-Developed edge detector 



34 
 
 

 

Figure 22. A-Original image, B-Golden standard, C-Canny edge detector, D-Developed edge detector 

  



35 
 
 

2. 3.  Hardware methodology 

In this section hardware methods and strategies performed for the testing of this 

master thesis are described. The strategy of this master thesis was to develop an 

edge detection filter that is similar to already developed ones that are implemented 

into Matlab software. For the purpose of this master thesis the “Canny” edge 

detection filter was designed, which is described in the section below. Images that 

were used are greyscale and downloaded from online database [11]. Furthermore, 

the foveal and convolution algorithms that are based on existing ones were also 

created for the purpose of this master thesis. The principles of aforementioned 

algorithms are described in the sections below. 

2. 3. 1. Edge detector 

Edge detection is a set of mathematical methods that are finding points in a digital 

image where the image brightness discontinuities, i.e. changes sharply. Those points 

are organized into a set of curved line segments called edges. In 1986 John F. 

Canny developed multi-stage algorithm to detect a wide range of edges in images 

called Canny edge detector. 

 

Figure 23. Image segmentation according Canny method 

Therefore, Canny edge detector uses the edge-detection method in order to find 

edges in an image. Furthermore, this edge detector achieves the smoothing process 

with a linear combination of exponential function after that it detects the strong and 

weak edges, by means of higher order derivative operators. Moreover, Canny 

operator is the result of solving an optimization problem using constraints. The 

criteria for that are local unicity, localization and sensibility. Regarding its power of 



36 
 
 

edge detection the Canny edge detection algorithm is known as the optimal edge 

detector. In the next example is shown how Canny edge detector differs from another 

edge detector (i.e., Sobel edge detector). [21] 

 

Figure 24. Comparison of a Sobel filter and Canny filter [21] 

The main key ideas, methods and principle can be found in a Canny´s paper "A 

Computational Approach to Edge Detection" [25] that explains how he improved then 

existing methods of edge detection applying a few principles. First principle was 

linked with low error rate by marking and getting response only from real edges. 

Furthermore, the second principle is that the edge points be well localized, the 

distance between actual edge and edge pixels that are marked and found by detector 

amounts a minimum. Third, and also the last, principle is based on releasing a 

response from a single edge; that means that it behaves as last check, avoiding the 

chance of multiple responses from another edge. 



37 
 
 

 

Figure 25. Scheme of the Canny algorithm implemented in hardware 

Thus, Canny algorithm first affects an image with the smoothing in order to eliminate 

the possible noise. Sequential step is finding the image gradient to peak regions with 

high spatial derivatives. These regions are afterwards tracked along with the 

algorithm, which suppresses any pixel that is not at its maximum. The gradient array 

is reduced at this point, i.e., hysteresis. Hysteresis is used therefore in order to track 

along the remaining pixels, which are not suppressed within previous step. For this 

proposal, i.e., hysteresis, are used two thresholds. In case when the magnitude is 

below the first threshold, it is set to zero (made a non-edge). In the other case, when 

the magnitude is above the high threshold, it is made an edge. Third case is when 

the magnitude is between the 2 thresholds, when it is set to zero, unless if a path 

from this pixel to a pixel exists with a gradient above second threshold. 

Application of the canny edge detector requires the five stages, which are described 

in sequential chapters. 

 

First Stage (S1):  

First step refers to using a filter in order of removing all the noise from the raw image. 

Within this step a Gaussian filter mask is applied. Gaussian filter is a 5x5 matrices 

which have constant σ = 1.4.  



38 
 
 

B =
1

159

[
 
 
 
 
2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 5
2 4 5 4 2]

 
 
 
 

× 𝐴 (7) 

 

A convolution mask, with witch a smoothing process is preformed, is usually much 

smaller than the raw image. As a result, that mask is slide over the image, 

manipulating a square of pixels at a time. [22]  

 

Second Stage (S2): 

Finding the edge strength by taking the gradient of the image is the second step. A 

Sobel operator does a 2D spatial gradient measurement based on an image.  

Therefore, the approximate absolute gradient magnitude (i.e., edge strength) at each 

point could be found. The Sobel operator works with two 3x3 convolution masks, 

(i.e., convolution kernels). One estimates the gradient in the x-direction (Gx), while 

another estimates the gradient in the y-direction (Gy). [23] 

Gx = [
−1 0 1
−2 0 2
−1 0 1

] , Gy = [
−1 −2 −1
0 0 0
1 2 1

] (8) 

 

The magnitude of the gradient is then approximated using the formula: 

|G| = |Gx| + |Gy| (9) 

Third Stage (S3): 

The direction of the edge is calculated using both gradients, in the x and in the y 

directions. An error will be generated in the case when summation of x components 

amounts zero. Thus, in the code a restriction exists to set whenever this case occurs. 

Moreover, when an error happens, the edge direction has to be 90 degrees or 0 

degrees, depending on how much the value of the gradient in the y-direction 

amounts. If Gy is zero, consequently, the edge direction will be 0 degrees. 



39 
 
 

Otherwise, the edge direction will equal 90 degrees. Edge direction is calculated 

throughout the following formula: [22] 

θ =  tan(
Gy

Gx
) (10) 

Fourth Stage (S4) 

After third step the edge direction is known, therefore, the next step is to interconnect 

the edge direction to a direction that can be traced in an image. In the 5x5 sized 

image the pixels are aligned as it is shown in the following equation.  

x x x x x
x x x x x
x x a x x
x x x x x
x x x x x

 (11) 

According previous image, there are only four possible directions when describing 

the surrounding pixels of the pixel “a”. They amount: - 0 degrees (horizontal 

direction), 45 degrees (along the positive diagonal), 90 degrees (vertical direction), or 

135 degrees (along the negative diagonal). Therefore, the edge orientation has to be 

find within one of the mentioned four directions, regarding which direction is the 

closest one (e.g. if the orientation angle amounts 3 degrees, it will be estimated as 

zero degrees. 

 

Fifth Stage (S5): 

A non-maximum suppression criterion has to be applied after the edge directions are 

known. It is used to trace along the edge in the edge direction as well as suppress 

any pixel value that is not considered to be an edge. Fifth stage usually gives a thin 

line in the output image. 

 

  



40 
 
 

Sixth Stage (S6): 

In this last stage, hysteresis is applied in order to eliminate the streaking. Streaking 

represents the breaking up of an edge contour caused by the operator output 

fluctuating above and below the threshold. [22] Thresholding with hysteresis requires 

uses 2 thresholds, high and low thresholds (T1 and T2). 

First is high threshold applied, he marks out the edges, which are genuine. From that 

edges can be traced throughout the image. While tracing an edge, lower threshold is 

applied which allows tracing faint sections of edge as long as he find starting point.  

Any pixel in the image which value amounts greater than T1 is considered to be an 

edge pixel, thus, is marked like it immediately. Moreover, any pixels linked to the 

edge pixel and that has a value greater than T2 is selected as edge pixels as well. In 

the conclusion, it is necessary to start with a gradient of T2, and the process will not 

stop until reaching a gradient below T1. 

When this process is done, algorithm gives binary image where each pixel is marked 

as edge pixel or a non-edge pixel. [19] Process of edge detection processing is 

shown in figure 26 below. 



41 
 
 

 

Figure 26. Stages in the algorithm 

  



42 
 
 

2. 3. 2. Convolution 

Convolution is considered to be one of the most important primitive operations for 

image processing that changes the intensity of a pixel to reflect the intensities of the 

surrounding pixels. It is commonly used to create image filters. Furthermore, popular 

image effects like blur, sharpen, and edge detection can be created using 

convolution. 

 

Considering the form of mathematical convolution, one input image, a kernel mask 

(which will act as filter) and the values of a given pixel in the output image are 

calculated by multiplying each kernel value by the corresponding input image pixel 

values. The kernel or more specifically, the values held within the kernel, is what 

determines how to transform the pixels from the original image into the pixels of the 

processed image. [24] 

 

Figure 27. Convolution [24] 

A technique for fast convolution is based on the filter mask that is separable. It is 

possible only if the filter mask can be broken into two one-dimensional signals: a 

vertical and a horizontal projection: 

 



43 
 
 

x[r, c] = vert[r] × hor[c] (12) 

The value of each pixel in the image is equal to the corresponding point in the 

horizontal projection multiplied by the corresponding point in the vertical projection. 

There are, however, an infinite number of separable images. This can be understood 

by generating discretionary vertical and horizontal projections, and finding the image 

that matches them. 

 

To perform the convolution process using a separable filter kernel, the process is 

based on convolving each column in the image with the vertical projection, resulting 

in an intermediate image. Following, each row of this intermediate image will be 

convolved with the horizontal projection of the mask. The process is commutative 

being possible permuting rows with columns. The resulting image is identical to the 

direct convolution (O(n^2)) of the original image and the filter kernel. In other words, 

convolving an MxM filter kernel with an NxN image requires a time proportional to 

N2M2, with it, each pixel in the output image depends N2M2N^2 M^2 on all the pixels 

in the filter kernel. In comparison, convolution by separability only requires a time 

proportional to N2M. For filter kernels that are hundreds of pixels wide, this technique 

will reduce the execution time by a factor of hundreds. 

  



44 
 
 

2. 3. 3. Simulating foveal vision 

Generally, the visual system of primates has a space-variant nature where the 

resolution is high in the fovea and gradually declines towards the periphery of the 

visual field. Due to rapid scanning of the eye (saccades), it is possible to accomplish 

very high resolution via the fovea, preserving a rapid wide field of vision. In order to 

simulate this sampling behaviour we divide the image into two regions; fovea and 

periphery, using a multi-scale resolution sampling methods. The model has a 1:1 

proportion of pixels in the fovea. Corresponding to one pixel and equal width, the 

peripheral region is splite into concentric rings. Kernel size grows exponentially with 

radial distance from the fovea, and every ring is blurred by a Gaussian function. 

We presume that the number of pixels in the input image proximate the number of 

cones sampling the retinal image. Based on the biological size of the fovea with 

respect to the retina, the number of pixels characterizing the fovea field in the input 

image is determined. Dimensions are 1mm and 42mm correspondingly. As follows, 

for an image size of 800 x 800, the number of pixels characterizing the fovea will 

roughly be 20 x 20. The foveal output image will be: 

Ifoveal(x, y, r) = Gσ(x, y) × I(x, y, r) (13) 

Gσ(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

 (14) 

Where Gσ(x, y) is a two dimensional Gaussian averaging filter with a standard 

deviation σ equalto log(r), and r is the radial distance of the pixel (x, y) from the 

centre of the input image. 

Colour separation 

After simulating the foveal-peripheral vision the second stage in the model is to 

account for the colour separation in the retina.  

Input images are basically 2D matrices, with the RGB components. In the contrary, 

the chromatic information in the human retina is encoded into two color opponent 

channels; green-red and blue-yellow, and one achromatic channel. For that reason it 

is converted to a LGRBY colour space. 



45 
 
 

Achromatic or the L channel represents absolute luminance and extends from 0 to 

100, where 0 represents black and 100 white.  

The two colour channels, GR and BY, represent the greenness-redness and the 

blue-ness-yellowness colour opponents respectively. 

The negative values of GR indicate green while positive values indicate magenta. In 

the case of BY colour channel, negative values indicate blue and positive values 

indicate yellow. Pixels for which GR and BY are equal and are both equal to 0 are 

achromatic and thus the L channel represents the achromatic scale of gray from 

black to white. 

Horizontal layer 

The horizontal cells serve as a negative feedback to gain control on cone cells, 

adapting the reduction of glutamate release to increase the illumination. Since the 8-

bit dynamic range of most jpeg images is small, the variation in illumination is 

considered to be small, and therefore gaining of control was not considered in this 

model, although histogram equalization can be used to ensure optimal use of the 8-

bit intensity range. 

Three types of the horizontal cells exist; HI (achromatic), HII and HIII (chromatic) 

cells. They have direct electrical synapses with each other and provide inhibitory 

feedback to the photoreceptors, with receptive field growing towards the periphery. 

On the other hand, horizontal cells are absent in the fovea. An average Gaussian 

filter enables obtaining of the output of the horizontal cell by convolving the cone 

output. 

Bipolar layer 

Bipolar cells receive their inputs essentially from the cones with inhibitory feedback 

from the horizontal cells. With decreasing glutamate (increasing photo response), ON 

bipolar cells depolarize from the connecting photoreceptors, whereas OFF bipolar 

cells hyperpolarize. The phenomena centre-surround processing is generated from 

the synapses of surrounding ON and OFF bipolar cells to the retinal ganglion cells. In 

mammals, the proportion of the centre diameter field to the surround diameter one is 

range between 1:10. The ratio of the centre diameter field in mammals, to the 

surround diameter one is between 1:10. 



46 
 
 

The centre-surround features of the bipolar cells, can be modelled in mathematical 

form as a difference of two Gaussian low pass filters (DoG). The surround filter, is 

more low-pass than the centre one. Mathematically DoG output to the retinal 

ganglion cells can be defined as: 

DoGBipolar(x, y) =
1

2πσs
2 e−(x2+y2)/2σs

2
- 

1

2πσc
2 e−(x2+y2)/2σc

2
 (15) 

σs and σc are the surround and centre standard deviation of the Gaussian filter. 

Between the surround sigma to the centre one, the ratio is considered to be 1:2, 

which give a reasonable agreement with the physiologically measured value. Using 

this ratio value results in a receptive field diameter of the surround larger than the 

centre diameter by 5 to 6 times. Centre surround processing in the retina, is carried 

out for Red-centre/Green-surround, Green-centre/Red-surround, Blue-centre/Yellow-

surround (parvocellular pathway) and achromatic ON-OFF centre-surround 

(magnocellular pathway). In this model the five centre-surround signals are 

calculated as following: 

 DoGgreen / red = Horzgreen −Conered  

 DoGred / green = Horzred −Conegreen  

 DoGblue / yellow = Horzblue −Coneyellow  

 DoGyellow / blue = Horzyellow −Coneblue  

 DoGLuminance = HorzLuminance −ConeLuminance 

The size of the surround Gaussian kernel is set to 5 times larger than the size of 

centre kernel in each ON/OFF channel. Although there is no Yellow-centre/Blue-

surround processing in the retina, here it was included for purposes of processing 

symmetry.  

Image reconstruction 

Reconstruction is accomplished by reversing the processing operations carried out in 

the three retina layers. The output of DoG process of the bipolar cells is treated as a 

spatial derivative of the achromatic, R/G and B/Y channels. Given this gradient G for 

each channel, assignment is to reconstruct an image I whose gradient I is very 

similar to G. To achieve this, solution is the equation I = G. Considering the gradient 

image is a modified one from the actual gradients of the L, GR and BY channels of the 



47 
 
 

LGRBY image, the resulting gradient field G = [Gx, Gy] may not be integrable. To 

overcome this situation, there is a suitable function I, whose gradient should be very 

close to G using the least square error approach by searching the space of all 2D 

potential functions, that is, to minimize the integral in 2D space. 

Macular degeneration simulation 

Described model above simulates a human retina. Degeneration is implemented 

between the foveal simulation (eccentricity simulation) and colour separation. In that 

way is simulated scotoma similar that is found in AMD patients. This degeneration 

process is created in the way that first is generated binary mask that simulates 

lesions on the scotoma region.  

The function that generates this mask takes three parameters; the location of the 

fovea with respect to the whole image (this refers to the area in the image where the 

person is fixating on it), the size of the degenerated area relative to the macula size, 

and the degree of degeneration. 

 

  



48 
 
 

For second part of the testing hardware implementation of the algorithms to three 

different GPU’s were developed which will show speed of processing images. 

Algorithms that were tested are convolution, edge detector and foveal algorithm. 

GPU’s that were used for the experimental part of this master thesis will be described 

in the following paragraph. 

Table 1. Comparison of machines used in the experiments 

 
Intel Xeon CPU 

E5-2670 
Intel Xeon Phi 

Accelerator 
AMD A10-6800K 

APU 
NVIDIA Tesla K20c 

OpenCl version 1,2 1,2 1,2 1,1 

Max. Compute 
Units 

32 236 4 13 

Local Memory Size 32 KB 32 KB 32 KB 48 KB 

Global Memory 
Size 

32074 MB 5773 MB 7197 MB 4799 MB 

Max Alloc Size 8018 MB 1924 MB 2048 MB 1199 MB 

Max Work-group 
Size 

8192 8192 1024 1024 

Max Work-item 
Dims 

(8192 8192 8192) (8192 8192 8192) (1024 1024 1024) (1024 1024 64) 

 

Intel Xeon E5 2670 has clock speed at 2.6 GHz which can run with turbo boost till 3.3 

GHz. This machine need power up to 115 W. Xeon E5 have 8 cores and supported 

with 4 GB of DDR3 memory. It is supported with OpenCL version 1.2. 

AMD A10-6800K also known as AMD Richland is Accelerated Parallel Processor 

(APU) which means that contains CPU and GPU in one. This APU have “Trinity” 

chip, which have core speed up to 4.1GHz/4.4GHz and GPU clocked at 844MHz. 

This APU contains GPU called Radeon HD 8670D which can have maximum 

resolution at 2560x1600 pixels. It contains DDR3 memory connected using a 128-bit 

memory interface. Core speed is 844 MHz while memory is running on 1067 MHz. 

Required power is 100 W. [20]  

NVIDIA Tesla K20c is high-end professional graphics card. It is built on the 28nm 

process and based on the GK110 graphics processor. Tesla K20c contains 5120 MB 

GDDR5 memory which are connected using a 320-bit memory interface. The GPU is 

operating at frequency of 706 MHz and memory is running at 1300 MHz. Powerful 

like this it needs power up to 225 W. Also can run in full HD mode. 

  



49 
 
 

4.  Results 

1. 4.  Comparison and critical evaluation 

1. 4. 1. Software implementation 

In the tables below are results calculated from metrics functions. We have 5 different 

images where first image is golden standard, which is how human eye will detect 

edges and second is filtered image through our developed algorithm. For testing’s we 

changed two values from algorithm, filter size and sigma. In this case we used three 

different filter sizes 3x3, 5x5 and 9x9 instead of well-known Gaussian filter with size 

of 5x5. Instead of using default sigma of 1.4 we used five different values. Our 

sigmas were 0.1, 0.5, 1, 2 and 5. First table shows results with values of filter size 

3x3 and all sigma values. 

Table 2. Results with filter size [3x3] and all values of sigma (σ) 

Image 1 Filter size/sigma 3/0.1 3/0.5 3/1 3/2 3/5 

  SSIM 0,269502 0,273617 0,280152 0,284796 0,286042 

  MSE 18,0299 18,24791 18,74172 18,90852 18,92669 

  PSNR 35,46808 35,41588 35,29992 35,26143 35,25726 

Image 2 Filter size/sigma 3/0.1 3/0.5 3/1 3/2 3/5 

  SSIM 0,331886 0,348594 0,391614 0,403953 0,408567 

  MSE 10,13387 10,21975 10,31554 10,33041 10,34362 

  PSNR 37,97026 37,93361 37,89309 37,88684 37,88129 

Image 3 Filter size/sigma 3/0.1 3/0.5 3/1 3/2 3/5 

  SSIM 0,369784 0,386647 0,435242 0,448629 0,451769 

  MSE 6,758117 6,840694 6,959605 6,98603 6,989333 

  PSNR 39,72975 39,67701 39,60216 39,58571 39,58365 

Image 4 Filter size/sigma 3/0.1 3/0.5 3/1 3/2 3/5 

  SSIM 0,233834 0,241028 0,261189 0,265398 0,268121 

  MSE 10,85395 10,90349 11,04718 11,06865 11,07856 

  PSNR 37,67213 37,65235 37,5955 37,58707 37,58318 

Image 5 Filter size/sigma 3/0.1 3/0.5 3/1 3/2 3/5 

  SSIM 0,437025 0,439516 0,445171 0,447201 0,447201 

  MSE 20,03488 20,22811 20,67568 20,81441 20,86725 

  PSNR 35,01014 34,96846 34,87341 34,84437 34,83336 

 



50 
 
 

Regarding to the metric equations this Table 1 show that there is no possible match 

between two images in the case of SSIM function. All five images are similar but 

none of them are the same, closest match is in the Image 3 with sigma (σ=5) where 

the result is 0,451769 which is the highest match. For PSNR metrics, reconstructed 

image is better if the number is higher, all results are above 30 but not even one is 

higher over 40, closest is also Image 3 with smallest sigma (σ=0.1). Result is 

39,72975.  

Table 3. . Results with filter size [5x5] and all values of sigma (σ) 

Image 
1 

Filter 
size/sigma 

5/0.1 5/0.5 5/1 5/2 5/5 

  SSIM 0,269502 0,273594 0,292007 0,33177 0,348995 

  MSE 18,0299 18,25286 19,09185 19,85816 19,92257 

  PSNR 35,46808 35,4147 35,21953 35,04862 35,03456 

Image 
2 

Filter 
size/sigma 

5/0.1 5/0.5 5/1 5/2 5/5 

  SSIM 0,331886 0,348607 0,421567 0,498209 0,513701 

  MSE 10,13387 10,21975 10,38986 10,55997 10,71687 

  PSNR 37,97026 37,93361 37,86191 37,79138 37,72733 

Image 
3 

Filter 
size/sigma 

5/0.1 5/0.5 5/1 5/2 5/5 

  SSIM 0,369784 0,386728 0,468242 0,532811 0,542983 

  MSE 6,758117 6,840694 7,073562 7,412128 7,448462 

  PSNR 39,72975 39,67701 39,53163 39,32858 39,30734 

Image 
4 

Filter 
size/sigma 

5/0.1 5/0.5 5/1 5/2 5/5 

  SSIM 0,233834 0,241328 0,275127 0,309892 0,32098 

  MSE 10,85395 10,90349 11,10828 11,34941 11,37914 

  PSNR 37,67213 37,65235 37,57154 37,47828 37,46692 

Image 
5 

Filter 
size/sigma 

5/0.1 5/0.5 5/1 5/2 5/5 

  SSIM 0,437025 0,439492 0,449579 0,454876 0,448874 

  MSE 20,03488 20,23141 20,95479 21,96883 22,47256 

  PSNR 35,01014 34,96775 34,81518 34,60994 34,51149 

 

  



51 
 
 

In the Table 2 are shown results with filter size 5x5, neither with filter size like in 

original Canny edge detector there is no match between results. Highest match is in 

Image 3 with sigma (σ=5). For the PSNR is the same like in the previous table there 

is no lower result then 30 but either higher then 40, maximum result is in Image 3 

with sigma (σ=0.1) and it is 39,72975. For sigmas below value (σ=1) there is no 

change. 

 

Table 4. . Results with filter size [9x9] and all values of sigma (σ) 

Image 
1 

Filter 
size/sigma 

9/0.1 9/0.5 9/1 9/2 9/5 

  SSIM 0,269502 0,273594 0,293464 0,384676 0,467852 

  MSE 18,0299 18,25286 19,10341 20,82762 22,14885 

  PSNR 35,46808 35,4147 35,2169 34,84161 34,5745 

Image 
2 

Filter 
size/sigma 

9/0.1 9/0.5 9/1 9/2 9/5 

  SSIM 0,331886 0,348607 0,42463 0,594423 0,633565 

  MSE 10,13387 10,21975 10,39151 10,6954 11,22224 

  PSNR 37,97026 37,93361 37,86122 37,73604 37,52722 

Image 
3 

Filter 
size/sigma 

9/0.1 9/0.5 9/1 9/2 9/5 

  SSIM 0,369784 0,386728 0,471536 0,607463 0,651232 

  MSE 6,758117 6,840694 7,085123 7,552509 7,892727 

  PSNR 39,72975 39,67701 39,52454 39,2471 39,05574 

Image 
4 

Filter 
size/sigma 

9/0.1 9/0.5 9/1 9/2 9/5 

  SSIM 0,233834 0,241328 0,276201 0,361604 0,391131 

  MSE 10,85395 10,90349 11,11654 11,46997 11,61531 

  PSNR 37,67213 37,65235 37,56831 37,43239 37,3777 

Image 
5 

Filter 
size/sigma 

9/0.1 9/0.5 9/1 9/2 9/5 

  SSIM 0,437025 0,439492 0,450151 0,473444 0,438253 

  MSE 20,03488 20,23141 20,96635 22,75167 24,93336 

  PSNR 35,01014 34,96775 34,81278 34,45788 34,0602 

 

In the third table results will be the same but numbers will be different, for SSIM 

Image 3 with sigma (σ=5) is the closest match, and for PSNR is Image 3 with sigma 

(σ=0.1). For sigmas below value (σ=1) there is almost no change. Therefore sigma 

values should be higher in the experiments and then results can be more precise. In 

the figure below is comparison of a best PSNR (A) and SSIM (B) metric. On the right 



52 
 
 

side where is best result for SSIM metric it is clearly that have best match because 

filtered image doesn’t have so many edges extracted. Black pixels matches better 

with golden standard and therefore result is better, closer to the 1.    

 

In the figure 28 are shown best results given by PSNR and SSIM metrics. PSNR 

result has parameters of filter size 9 and sigma size 0.1. SSIM result is shown with 

parameters filter size 9 and sigma size 5. 

 

 

Figure 28. Comparison of best PSNR (A) and SSIM (B) metric 

  



53 
 
 

1. 4. 2. Hardware implementation 

Table 5 represents results given from three different machines described above. 

Results are presented in microseconds. For different image sizes there is increasing 

time for processing of an image. Smaller images are processed faster than larger 

images, therefore, results increase towards larger images which is seen in the table 

below. Regarding to the filter size time also increases towards bigger filter size. For 

the filter size 3, in general NVIDIA machine is fastest for processing this algorithm, 

only exception is smallest image size where AMD APU has faster time, 63,04 µs. 

  

Table 5. Comparison of a different machines, image sizes and filter size 3 

  

Intel 
Xeon 

CPU E5-
2670 

Intel Xeon 
Phi 

Accelerator 

AMD A10-
6800K 
APU 

NVIDIA 
Tesla 
K20c 

  Image Size         

C
O

N
V

O
L
U

T
IO

N
 

Filter size   3 3 3 3 

OCL Kernel 

64 

146,944 3147,818 63,04 88,448 

OCL Complete 287559 1836658 194850 2545127 

CPU 80 80 85 92 

OCL Kernel 

128 

700,57 5116,84 449,88 122,88 

OCL Complete 297036 2034795 191474 2628264 

CPU 266 266 477 372 

OCL Kernel 

256 

2099,634 7609,662 2264,32 232,448 

OCL Complete 325619 1831770 211163 2478064 

CPU 2047 2047 1868 937 

OCL Kernel 

512 

16428,492 9307,728 9556,48 740,48 

OCL Complete 288397 1796770 216833 2469529 

CPU 3331 3331 14122 4128 

OCL Kernel 

1024 

27748,854 17630,628 42144,88 2689,856 

OCL Complete 350862 1896893 244293 2463820 

CPU 19183 19183 37657 15783 

OCL Kernel 

2048 

57672,54 89720,192 240172,24 10604,224 

OCL Complete 467289 2135332 464437 2541161 

CPU 48539 48539 137131 68038 

OCL Kernel 

4096 

477178,2 219665,22 1230573,4 95882,944 

OCL Complete 767448 2721544 1557995 2615232 

CPU 196178 196178 522640 243612 

 

  



54 
 
 

Table 6 will show results with filter size 5 which are in general similar to the results in 

table 5 except that time of processing is here a bit slower that in a previous table. 

AMD APU is the fastest machine but only with small size images. Every other size of 

an image is faster processed with NVIDIA Tesla K20c machine. 

   

Table 6. Comparison of a different machines, image sizes and filter size 5 

  

Intel 
Xeon 

CPU E5-
2670 

Intel Xeon 
Phi 

Accelerator 

AMD A10-
6800K 
APU 

NVIDIA 
Tesla 
K20c 

  Image Size         

C
O

N
V

O
L
U

T
IO

N
 

Filter size   5 5 5 5 

OCL Kernel 

64 

269,85 4008,798 87,72 94,784 

OCL Complete 346375 2024988 195078 2550241 

CPU 117 117 93 84 

OCL Kernel 

128 

709,342 5042,836 1296,72 129,856 

OCL Complete 286460 1825354 195478 2498645 

CPU 426 426 783 329 

OCL Kernel 

256 

2048,596 8208,488 3234,52 348,224 

OCL Complete 323045 1965198 193142 2582997 

CPU 3234 3234 2544 1974 

OCL Kernel 

512 

12404,586 8848,312 14142,76 1151,488 

OCL Complete 320581 1873060 201328 2518359 

CPU 6393 6393 18463 6223 

OCL Kernel 

1024 

33987,284 20107,458 63214,96 4294,976 

OCL Complete 294019 1977857 267134 2525129 

CPU 23292 23292 112823 27286 

OCL Kernel 

2048 

57424,85 82496,034 365715,28 16796,544 

OCL Complete 444607 2062342 593254 2611174 

CPU 100244 100244 399006 111176 

OCL Kernel 

4096 

363172,32 291099,27 1932806 137207,1 

OCL Complete 779095 2854308 2308036 2738857 

CPU 317505 317505 1543496 451460 

 

  



55 
 
 

Table 7 will show results with filter size 7 which are different than in previous tables. 

NVIDIA machine requires shorter amount of time for processing images comparing to 

the Intel Xeon Phi Accelerator which needs more time, 379823,15 µs what equals to 

0,3799 s. 

    

Table 7. Comparison of a different machines, image sizes and filter size 7 

  

Intel 
Xeon 

CPU E5-
2670 

Intel Xeon 
Phi 

Accelerator 

AMD A10-
6800K 
APU 

NVIDIA 
Tesla 
K20c 

  Image Size         

C
O

N
V

O
L
U

T
IO

N
 

Filter size   7 7 7 7 

OCL Kernel 

64 

274,842 3741,154 124,36 106,816 

OCL Complete 302204 1806249 196245 2485084 

CPU 125 125 322 190 

OCL Kernel 

128 

730,676 6300,858 908,96 153,344 

OCL Complete 301127 1871626 193949 2436875 

CPU 990 990 603 487 

OCL Kernel 

256 

1397,418 7538,542 4331,28 442,688 

OCL Complete 281078 1964548 209745 2509667 

CPU 4374 4374 7080 3234 

OCL Kernel 

512 

6710,242 10264,496 18641,68 1529,472 

OCL Complete 322589 2041520 219191 2440496 

CPU 8984 8984 19961 9439 

OCL Kernel 

1024 

23517,426 51636,658 85067,68 5808,64 

OCL Complete 388373 1993217 283638 2450144 

CPU 37066 37066 149395 39105 

OCL Kernel 

2048 

68187,18 85946,118 496842,96 23033,024 

OCL Complete 344035 2230334 706443 2488128 

CPU 108681 108681 554159 152478 

OCL Kernel 

4096 

370393,66 379823,15 2629773,1 190445,82 

OCL Complete 753499 2944994 2978992 2743504 

CPU 421318 421318 2106668 625325 

 

  



56 
 
 

Intel’s Accelerator has slowest time for processing images with filter size 9 and any 

other filter therefore times of Intel’s Accelerator will be just given in the tables but not 

commented during comparison. AMD APU machine has the second fastest time for 

processing images but with this filter size is not fast enough to compete with NVIDIA 

Tesla. Everything described is presented in the table 8. 

 

Table 8. Comparison of a different machines, image sizes and filter size 9 

  

Intel 
Xeon 

CPU E5-
2670 

Intel Xeon 
Phi 

Accelerator 

AMD A10-
6800K 
APU 

NVIDIA 
Tesla 
K20c 

  Image Size         

C
O

N
V

O
L
U

T
IO

N
 

Filter size   9 9 9 9 

OCL Kernel 

64 

295,454 4459,806 138,68 113,216 

OCL Complete 257163 1844290 196110 2455718 

CPU 131 131 580 264 

OCL Kernel 

128 

442,736 6758,478 1203,52 198,144 

OCL Complete 301819 1818460 195525 2523688 

CPU 1301 1301 2337 1047 

OCL Kernel 

256 

2822,518 7584,456 6425,24 525,184 

OCL Complete 326067 1991354 200609 2489131 

CPU 5538 5538 8403 2781 

OCL Kernel 

512 

16485,682 10896,386 23268,96 1928,128 

OCL Complete 333288 1786015 214685 2447167 

CPU 9017 9017 44048 11669 

OCL Kernel 

1024 

54145,054 51572,228 107293,28 7532,096 

OCL Complete 337918 1937225 304654 2470805 

CPU 49873 49873 202866 51545 

OCL Kernel 

2048 

61433,904 99203,804 634210,32 29462,912 

OCL Complete 423891 2114776 846387 2579526 

CPU 182320 182320 761001 219107 

OCL Kernel 

4096 

630790,05 400746,77 3316150,5 237340,86 

OCL Complete 847632 2934510 3703683 2882950 

CPU 579406 579406 3091391 823782 

 

  



57 
 
 

In the table 9 are shown results with filter size 15. AMD APU has twice slower time 

(233,68 µs) than NVIDIA Tesla (131,2 µs) in the processing smallest images. If we 

compare medium size images like 512, AMD APU (37074,04 µs) has ten times 

slowest time than NVIDIA Tesla (3118,144 µs). 

 

Table 9. Comparison of a different machines, image sizes and filter size 15 

  

Intel 
Xeon 

CPU E5-
2670 

Intel Xeon 
Phi 

Accelerator 

AMD A10-
6800K 
APU 

NVIDIA 
Tesla 
K20c 

  Image Size         

C
O

N
V

O
L
U

T
IO

N
 

Filter size   15 15 15 15 

OCL Kernel 

64 

362,002 5243,366 233,68 131,2 

OCL Complete 328759 1878834 205922 2415336 

CPU 512 512 509 416 

OCL Kernel 

128 

541,504 7240,69 1726,76 276,032 

OCL Complete 278203 1836888 199309 2488705 

CPU 2128 2128 4510 1951 

OCL Kernel 

256 

2235,212 7787,182 8375,96 844,608 

OCL Complete 378283 2041176 201371 2541547 

CPU 7101 7101 11192 8131 

OCL Kernel 

512 

12493,33 13115,058 37074,04 3118,144 

OCL Complete 334073 1947213 234067 2517003 

CPU 20188 20188 71016 20873 

OCL Kernel 

1024 

27079,768 72173,08 178981,12 12030,272 

OCL Complete 314212 1841574 373441 2558668 

CPU 71987 71987 328348 90135 

OCL Kernel 

2048 

53299,28 162909,41 1084668,6 47673,216 

OCL Complete 388565 2024182 1245152 2511559 

CPU 300997 300997 1260564 360057 

OCL Kernel 

4096 

396307,69 560541,38 5286147,4 405504,19 

OCL Complete 773734 3108758 5767121 3043347 

CPU 1086395 1086395 4988157 1459177 

 

  



58 
 
 

Comparing Intel Xeon CPU and NVIDIA Tesla, Intel’s processing time (706,03 µs) is 

five times longer than NVIDIA’s (142,528 µs) for that reason NVIDIA Tesla machine 

is best machine to process Convolution algorithm’s in the fastest time, shown in table 

10. 

 

Table 10. Comparison of a different machines, image sizes and filter size 21 

  

Intel 
Xeon 

CPU E5-
2670 

Intel Xeon 
Phi 

Accelerator 

AMD A10-
6800K 
APU 

NVIDIA 
Tesla 
K20c 

  Image Size         

C
O

N
V

O
L
U

T
IO

N
 

Filter size   21 21 21 21 

OCL Kernel 

64 

706,03 5469,202 266,68 142,528 

OCL Complete 303831 1759345 192366 2469478 

CPU 481 481 691 421 

OCL Kernel 

128 

946,38 7316,994 2721,08 342,784 

OCL Complete 328150 1714966 196885 2497327 

CPU 2741 2741 6163 2595 

OCL Kernel 

256 

2192,748 10141,146 11397,04 1113,344 

OCL Complete 294772 2002995 207021 2507190 

CPU 5723 5723 23646 7264 

OCL Kernel 

512 

27297,67 15269,058 51168,6 4334,528 

OCL Complete 380174 2029244 238321 2595488 

CPU 32090 32090 101816 31704 

OCL Kernel 

1024 

27462,618 79858,178 257671,88 16676,864 

OCL Complete 352146 2014849 453226 2520625 

CPU 127797 127797 443404 134035 

OCL Kernel 

2048 

82274,776 175819,61 1589814,9 66319,488 

OCL Complete 373142 2291679 1703555 2534732 

CPU 389726 389726 1735709 535571 

OCL Kernel 

4096 

423403,44 730200,29 6939197,5 586577,41 

OCL Complete 857863 3267223 7632370 3102151 

CPU 1601745 1601745 6983262 2404844 

 

  



59 
 
 

Table 11 will show times given for different image sizes processed through edge 

detector. Shortest time for processing smallest image size (64) have AMD APU 

(128,36 µs) but after that NVIDIA Tesla is quicker than AMD APU in processing edge 

detector algorithm’s which means that NVIDIA is the best option for processing. 

Comparison between Intel Xeon CPU and NVIDIA for largest image size is that 

NVIDIA need four times shorter processing time than Intel. 

 

Table 11. Comparison of a different machines and image sizes 

  
CANNY EDGE DETECTOR 

Image size 64 128 256 512 1024 2048 4096 

Intel Xeon CPU 
E5-2670 

OCL Kernel 485,753 906,028 5571,119 19223,245 56312,218 205288,59 1001529,937 

OCL Complete 556397 491046 464157 557000 602702 695877 1508299 

CPU 655 2615 9693 56410 227117 719790 3096220 

Intel Xeon Phi 
AcceleratoR 

OCL Kernel 6003,487 35710,111 41770,596 22558,071 113043,02 198226,35 645568,293 

OCL Complete 2235530 2153419 2477382 2393045 2533114 2701620 3945746 

CPU 542 2158 9645 44671 183638 774580 3030218 

AMD A10-6800K 
APU 

OCL Kernel 128,36 621,96 2651,14 11841,18 53676,34 286286,12 1566731,84 

OCL Complete 242407 249498 248729 249023 305810 567324 1945006 

CPU 1322 5328 12474 62127 289346 1160982 4480789 

NVIDIA Tesla 
K20c 

OCL Kernel 131,712 285,248 971,616 3641,536 14084,928 56296,928 245075,2 

OCL Complete 2501961 2543469 2616593 2605837 2613994 2633427 2891309 

CPU 602 2506 12710 52045 200553 843081 3185211 

 

  



60 
 
 

For medium sized images NVIDIA Tesla (327,008 µs) need ten times shorter time 

than AMD APU (7119,58 µs) to process foveal algorithm like shown in table 12. 

Comparing AMD APU and Intel Xeon CPU, Intel need four times longer time to 

process same image size. Second largest images has similar case, to process those 

images NVIDIA Tesla need five times shorter time. From those results it is very easy 

to conclude that NVIDIA’s machine is the best option for processing.    

 

Table 12. Comparison of a different machines and image sizes 

  
FOVEAL 

Image size 64 128 256 512 1024 2048 4096 

Intel Xeon CPU 
E5-2670 

OCL Kernel 391,562 1122,36 7498,012 27667,953 103708,22 419183,62 1790298,885 

OCL Complete 375769 329189 342325 344465 439009 774385 2180628 

CPU 5343 14870 87894 342888 1593705 9060783 39626409 

Intel Xeon Phi 
AcceleratoR 

OCL Kernel 2584,316 3838,421 32964,239 79529,992 278726,37 1595469,2 7249933,938 

OCL Complete 2084016 1939519 1807984 2063507 2123019 3578843 9712812 

CPU 2503 12033 86855 361532 1582344 9100305 39558219 

AMD A10-6800K 
APU 

OCL Kernel 244,24 937,72 7119,58 30409,92 138845,98 575080,62 3067267,26 

OCL Complete 204948 214037 218927 246631 351805 819656 3435066 

CPU 14371 80993 513971 2531505 11448760 68023317 296427453 

NVIDIA Tesla 
K20c 

OCL Kernel 63,808 125,984 627,008 2724,672 12327,104 70313,728 312065,408 

OCL Complete 2553948 2457872 2581091 2525828 2443358 2643430 3014705 

CPU 1908 12824 58179 297544 1254212 7370028 32390288 

 

  



61 
 
 

In the table 13 are given speedUps for the convolution algorithm, where is shown that 

biggest speedup is at AMD APU machine (4.18) at filter size 9 and smallest speedup 

has Intel Xeon Phi (0.03) at filter sizes 3, 5, 7 and 9. In every other image size is 

similar situation but speedups are bit higher with same machine. Highest speedUps 

vary but they vary in different filter sizes processed with same machine NVIDIA 

Tesla. All speedUps are also shown graphically in the figure 26. 

 

Table 13. Comparison of a different machines, image sizes and filter sizes 

  

Image size 64 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,54 0,43 0,45 0,44 1,41 0,68 

OCL-Intel MIC 0,03 0,03 0,03 0,03 0,10 0,09 

OCL-AMD APU 1,35 1,06 2,59 4,18 2,18 2,59 

OCL-NVIDIA K20c 1,04 0,89 1,78 2,33 3,17 2,95 

  

Image size 128 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,38 0,60 1,35 2,94 3,93 2,90 

OCL-Intel MIC 0,05 0,08 0,16 0,19 0,29 0,37 

OCL-AMD APU 1,06 0,60 0,66 1,94 2,61 2,26 

OCL-NVIDIA K20c 3,03 2,53 3,18 5,28 7,07 7,57 

  

Image size 256 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,97 1,58 3,13 1,96 3,18 2,61 

OCL-Intel MIC 0,27 0,39 0,58 0,73 0,91 0,56 

OCL-AMD APU 0,82 0,79 1,63 1,31 1,34 2,07 

OCL-NVIDIA K20c 4,03 5,67 7,31 5,30 9,63 6,52 

 

  



62 
 
 

 

Table 14. Comparison of a different machines, image sizes and filter sizes 

  
Image size 512 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,2 0,52 1,34 0,55 1,616 1,176 

OCL-Intel MIC 0,36 0,72 0,88 0,83 1,54 2,10 

OCL-AMD APU 1,48 1,31 1,07 1,89 1,92 1,99 

OCL-NVIDIA K20c 5,57 5,40 6,17 6,05 6,69 7,31 

  

Image size 1024 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,69 0,69 1,58 0,92 2,66 4,65 

OCL-Intel MIC 1,09 1,16 0,72 0,97 1,00 1,60 

OCL-AMD APU 0,89 1,78 1,76 1,89 1,83 1,72 

OCL-NVIDIA K20c 5,87 6,35 6,73 6,84 7,49 8,04 

  

Image size 2048 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,84 1,75 1,59 2,97 5,65 4,74 

OCL-Intel MIC 0,54 1,22 1,26 1,84 1,85 2,22 

OCL-AMD APU 0,57 1,09 1,12 1,20 1,16 1,09 

OCL-NVIDIA K20c 6,42 6,62 6,62 7,44 7,55 8,08 

  

Image size 4096 

Filter size 3 5 7 9 15 21 

conv1D 

OCL-Intel Multicore 0,41 0,87 1,14 0,92 2,74 3,78 

OCL-Intel MIC 0,89 1,09 1,11 1,45 1,94 2,19 

OCL-AMD APU 0,42 0,80 0,80 0,93 0,94 1,01 

OCL-NVIDIA K20c 2,54 3,29 3,28 3,47 3,60 4,10 



63 
 
 

 

 

Figure 29. SpeedUp in Convolution 

 

 

  

0,00

2,00

4,00

6,00

8,00

10,00

12,00

3 7 15 3 7 15 3 7 15 3 7 15 3 7 15 3 7 15 3 7 15

OCL-Intel Multicore

OCL-Intel MIC

OCL-AMD APU

OCL-NVIDIA K20c



64 
 
 

In the table 15 are compared speedUps for edge detector algorithm which has best 

speedUps at NVIDIA Tesla machine. Higher speedup is at second large image size 

and is 14.98 what is better shown graphically in figure 27. Smallest speedUps are at 

Intel Xeon Phi machine and contains 0,1 at the image size 64, 0,06 at image size 128 

and 1,98 at image size 256.  

 

Table 15. Comparison of a different machines and filter sizes 

  Filter size 64 128 256 512 1024 2048 4096 

EDGE 
DETECTOR 

OCL-Intel 
Multicore 

1,3 2,89 1,74 2,93 4,033 3,506 3,091 

OCL-Intel MIC 0,1 0,06 0,23 1,98 1,624 3,908 4,694 

OCL-AMD APU 10 8,57 4,71 5,25 5,391 4,055 2,86 

OCL-NVIDIA 
K20c 

4,6 8,79 13,1 14,3 14,24 14,98 13 

 

 

Figure 30. SpeedUp in edge detector algorithm 

 

 

  

0

2

4

6

8

10

12

14

16

64 128 256 512 1024 2048 4096

OCL-Intel Multicore

OCL-Intel MIC

OCL-AMD APU

OCL-NVIDIA K20c



65 
 
 

Compared speedUps for foveal algorithm are given in the table below. For foveal 

algorithm there is an exception for highest speedup this is at AMD APU which is 

118,3. Smallest speedup is at Intel’s Xeon Phi machine and it is 0,1 for image size 

64, 0,06 for image size 128. All those results are also shown in figure 28 for better 

visual understanding.   

 

Table 16. Comparison of a different machines and filter sizes 

  Filter size 64 128 256 512 1024 2048 4096 

FOVEAL 
OCL-Intel 
Multicore 

14 13,2 11,7 12,4 15,37 21,62 22,13 

  OCL-Intel MIC 0,1 0,06 0,23 1,98 1,624 3,908 4,694 

  OCL-AMD APU 59 86,4 72,2 83,2 82,46 118,3 96,64 

  
OCL-NVIDIA 
K20c 

30 102 92,8 109 101,7 104,8 103,8 

 

 

Figure 31. SpeedUp in foveal algorithm 

  

0

20

40

60

80

100

120

140

64 128 256 512 1024 2048 4096

OCL-Intel Multicore

OCL-Intel MIC

OCL-AMD APU

OCL-NVIDIA K20c



66 
 
 

5.  Conclusion 

Aim of this thesis was to test algorithms on the PC to see if they are processing in the 

way that could help visual impaired people and to test them onto different CPU and 

GPU to see if there is an opportunity to implement them onto some low cost medical 

device. To conclude is that through developed algorithms images are processed for 

metrics calculation which give us closer look to similarity of the developed algorithms. 

In the thesis three different metrics are used to get closer look to the filtered image. 

Not even one metric didn’t show exactly the same image. Best results has images 

with bigger sigma size and bigger filter size than 5. For more accurate results, further 

testings need to be done to see exact parameters for more similar image.  

  

There are four different machines used in this thesis to test developed algorithms. 

Every single machine processed every algorithm but neither of them have same time 

to process for that reason they have some differences. NVIDIA Tesla was the best 

machine for processing because of his Local memory size which is bigger than in the 

rest of machines. Therefore NVIDIA is recommend to be used in this type of 

processing images but this are only experiments. For some kind of medical device 

which can be used at daily bases, what was the aim of this thesis, that machine is too 

big. For that reason next experiments and testings need to be done with smaller, 

more portable machines which could be easily implemented into smaller device like 

smartphones and tablets. 

 

For final conclusion of this thesis, results are better than expected. Similarity of 

images is very high and could be even higher with detailed parameters. In the 

hardware implementation testings showed that NVIDIA has better performance than 

other machines. 

  



67 
 
 

6.  Future work 

While this thesis has demonstrated the potential of edge detection algorithms and its 

modifications in it, many opportunities for extending the scope of this thesis remain.  

First of all, more parameters should be included in the research. Due to certain 

limitations, expertise in field of computer science and programming, this master 

thesis is focused on low level of software and hardware implementations.  

This master thesis should test smaller machines which could be implemented into 

smaller portable devices. Smaller machines are way convenient for devices like 

smartphones or tablets which was the aim of this thesis. To sum up, future work 

should consider to improve current algorithms and implement them into smaller 

devices that are used nowadays. 

 

  



68 
 
 

7.  Bibliography 

1. Martins, J. C. & Sousa, L. A. (2009). Bioelectronic Vision Retina Models, 

Evaluation Metrcis, and System Design 

2. Hui, W., Xu-Dong, G. & Qingsong, Z. (2010). Main Retina Information Processing 

Pathways Modeling, IEEE (pp. 318-324) 

3. http://www.emedicinehealth.com/anatomy_of_the_eye/article_em.htm#eye_anato

my_introduction (last request: 18.05.2014) 

4. Gaster, B. R., Howes, L., Kaeli, D., Mistry, P., Schaa, D. (2012). Heterogeneous 

Computing with OpenCL 

5. Scarpino, M. (2012). OpenCL in Action 

6. Al-Atabany, W., A Memon, M., Downes, S. M., & Degenaar, P. A. (2010). 

Designing and testing scene enhancement algorithms for patiens with retina 

degenerative disorders 

7. Fleck, M.M. (1992). Some Defects in Finite-Difference Edge Finders 

8. Canny, J. (1986). A Computational Approach to Edge-Detection 

9. Holger, W., Olsen, S.C., Gooch, B. (2006) Real-time video abstraction 

10. http://www.emedicinehealth.com/age-related_macular_degeneration-

health/article_em.htm (last request: 20.06.2014) 

11. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/gray/gm_

2/main.html (last request: 20.07.2014) 

12. Wackerly, D. & Scheaffer, W., (2008). Mathematical Statistics with Applications 

13. Welstead, S. T. (1999). Fractal and wavelet image compression techniques 

14. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P., (2004) Image quality 

assessment: From error visibility to structural similarity 

15. http://www.emedicinehealth.com/age-related_macular_degeneration-

health/page6_em.htm#Treatment Overview (last request: 20.06.2014) 

16. http://www.emedicinehealth.com/script/main/art.asp?articlekey=128643&ref=1286

49 (last request: 21.06.2014) 

17. http://www.emedicinehealth.com/script/main/art.asp?articlekey=128639&ref=1286

49 (last request: 21.06.2014) 

18. Garaas, T.W. & Pomplun, M. (2007). Retina-Inspired Visual Processing 

http://www.emedicinehealth.com/anatomy_of_the_eye/article_em.htm#eye_anatomy_introduction
http://www.emedicinehealth.com/anatomy_of_the_eye/article_em.htm#eye_anatomy_introduction
http://www.emedicinehealth.com/age-related_macular_degeneration-health/article_em.htm
http://www.emedicinehealth.com/age-related_macular_degeneration-health/article_em.htm
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/gray/gm_2/main.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/gray/gm_2/main.html
http://www.emedicinehealth.com/script/main/art.asp?articlekey=128643&ref=128649
http://www.emedicinehealth.com/script/main/art.asp?articlekey=128643&ref=128649
http://www.emedicinehealth.com/script/main/art.asp?articlekey=128639&ref=128649
http://www.emedicinehealth.com/script/main/art.asp?articlekey=128639&ref=128649


69 
 
 

19. http://homepage.cs.uiowa.edu/~cwyman/classes/spring08-

22C251/homework/canny.pdf (last request: 29.08.2014) 

20. http://www.pc-specs.com/gpu/AMD/APU_Family/Radeon_HD_8670D/1787 (last 

request: 1.09.2014) 

21. http://www.mathworks.com/help/images/detect-edges-in-images.html (last 

request: 1.09.2014) 

22. http://www.ijcte.org/papers/100-G205-621.pdf (last request 1.09.2014) 

23. http://www.generation5.org/content/2002/im01.asp (last request 28.08.2014) 

24. https://developer.apple.com/Library/ios/documentation/Performance/Conceptual/v

Image/ConvolutionOperations/ConvolutionOperations.html (last request: 

29.08.2014) 

25. http://perso.limsi.fr/vezien/PAPIERS_ACS/canny1986.pdf (last request: 

3.09.2014) 

http://homepage.cs.uiowa.edu/~cwyman/classes/spring08-22C251/homework/canny.pdf
http://homepage.cs.uiowa.edu/~cwyman/classes/spring08-22C251/homework/canny.pdf
http://www.pc-specs.com/gpu/AMD/APU_Family/Radeon_HD_8670D/1787
http://www.mathworks.com/help/images/detect-edges-in-images.html
http://www.ijcte.org/papers/100-G205-621.pdf
http://www.generation5.org/content/2002/im01.asp
https://developer.apple.com/Library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/Library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://perso.limsi.fr/vezien/PAPIERS_ACS/canny1986.pdf

