Pintar, Matko

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Graphic Arts / Sveučilište u Zagrebu, Grafički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:216:513604

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-04

Repository / Repozitorij:

Faculty of Graphic Arts Repository

Sveučilište u Zagrebu, Grafički fakultet

ZAVRŠNI RAD

Matko Pintar

ZAVRŠNI RAD

Izrada 3D modela i animacija borbenog aviona

Mentor:

Student:

Prof.dr.sc. Lidija Mandić

Matko Pintar

Zagreb, srpanj 2018.

SAŽETAK

Tema ovog završnog rada je izrada 3D modela borbenog aviona. 3D model aviona je izrađen u programu za 3D modeliranje i animaciju, Blender-u. Danas je 3D modeliranje i animacija prisutna kod izrade raznih multimedijskih sadržaja. Cilj istraživanja, odnosno izrade ovog završnog rada, je upoznavanje s osnovama 3D modeliranja i oblikovanja te izrade animacija u 3D programu kao i primjena stečenih znanja na izradu konkretnog projekta. Za potrebe izrade 3D modela aviona potrebno je poznavati sve dijelove aviona i način slaganja tih dijelova, kako bi se dobio dobar 3D model aviona. Nakon izrade 3 D modela izvršilo se renderiranje.

Ključne riječi: 3D model, Blender, renderiranje, animacija

SADRŽAJ:

S	٩ŽET	АК									
S	٩DRŽ	ZAJ:									
1	UV	/OD 1									
2	PR	IPREMA ZA IZRADU DIJELOVA MODELA									
	2.1	Blender sučelje									
	2.2	Dodavanje i namještanje pozadinskih slika									
	2.3	Cyclesrenderer									
3	IZF	ADA 3D MODELA AVIONA									
	3.1	Izrada trupa7									
	3.2	Izrada krila 11									
	3.3	Izrada stakala 13									
	3.4	Izrada okvira stakala14									
	3.5	Izrada repa16									
	3.6	Izrada kotača i amortizera18									
	3.7	Izrada nosa aviona i propelera21									
4	RE	NDERIRANJE U BLENDERU 23									
	4.1	Teksturiranje u Blenderu									
	4.1.	1 UV unwrapp 24									
	4.1.	2 Node editor									
	4.1.	3 ShaderiuBlenderu									
	4.2	Teksturiranje modela pomoću pomoću ImageTexture									
	4.2.	1 Teksturiranje trupa i krila									
	4.2.	2 Teksturiranje propelera, nosa i ostalih dijelova krila									

. 33
. 34
. 34
. 35
. 37
. 38
38
41
45
45
46
48
51
52
53

1 UVOD

Blender je profesionalni i besplatni, opensource 3D računalni grafički softver koji se koristi za izradu 3D modela, animiranih filmova, video igrica, interaktivnih 3D aplikacija te vizualnih efekata. Navedene su glavne primjene, a mogućnosti Blendera su brojne: 3D modeliranje, teksturiranje, simuliranje, oblikovanje, animiranje, renderiranje, video uređivanje. Autor softvera je danski programer Ton Rozendal. *Blender* je u početku bio shareware software, zbog čega ga je 2002. godine, u strahu od bankrota, Rozendal bio primoran prodati za 100 000 eura. Od tada se razvija pod nadzorom BlenderFoundation-a i tek 2005. postaje potpuno besplatan za korištenje. Danas na njegovom usavršavanju ne radi samo nekolicina zaposlenih u BlenderFoundation nego i svi zainteresirani korisnici. Korisnici softvera su raznoliki: studenti koji žele otkriti svijet animacije i računalne grafike, 2D i 3Dprofesionalci koji kreiraju 2D/3Dcrteže i postere, animacije, kratke animirane filmove, ali i 3D-projektni timovi koji kreiraju dugometražne animirane filmove, 3D-videoigrice i mnogi drugi. O mogućnosti ovog programa svjedoče i filmovi kao što su: Agent 327: OperationBarbershop (2017), Caminandes: Llamigos (2016), CosmosLaundromat (2015), Tearsof Steel (2012) i mnogi drugi. [1]

Blender ima širok spektar mogućnosti upotrebe, sadrži veliki broj alata što se može učiniti zastrašujuće na samom početku korištenja. Vrlo je važno imati na umu da je Blender samo alat, a koliko dobro ćemo ga iskoristit ovisi o nama. Motiviranost i volja za učenjem su ključni.

Temu ovog rada odabrao sam u nadi da će mi pomoći u daljnjem učenju i napredovanju u 3D modeliranju i animacijama. Cilj rada bila je izrada 3D modela aviona te animacija njegovog uzleta.

U radu su korišteni najosnovniji alati za modeliranje i animaciju, te je dan presjek svih alata i postavki potrebnih za što kvalitetniji prikaz.

2 PRIPREMA ZA IZRADU DIJELOVA MODELA

2.1 Blender sučelje

Blender 3D odlikuje se vrlo malom veličinom instalacije (40 MB) i mogućnošću pravilnog rada na gotovo svim popularnijim operativnim sustavima (GNU/Linux, Mac OS i Microsoft Windows). Iako je Blender vrlo mali program, posjeduje sve karakteristike vrhunskog softvera za 3D-modeliranje. Neke od karakteristika su:

podrška za razne geometrijske oblike, uključujući i mrežne poligone,
 Bazijerove krivulje, površinsko modeliranje, metaballs i sl.

- osnovno nelinearno video/audio editiranje
- kontrola u realnom vremenu za vrijeme simulacije i renderiranja
- alati za kreiranje mnogih vizualnih efekata
- simulatori za kreiranje simulacija vode, vatre, eksplozija
- veliki izbor efekata sjene (shadingeffects)
- kreiranje igara u realnom vremenu
- alati za keyframe animacije koji uključuju i nelinearne animacije
- kreiranje krivih linija na bazi deformacija
- mrežasta detekcija sudara i mnoge druge

Danas se *Blender*može pokrenuti na većini računalnih konfiguracija. Minimalni sistemski zahtjevi su:

- procesor: 2 GHz dual core
- RAM memorija: 2 GB
- grafička kartica: OpenGL kartica s 512 MB RAM-a
- monitor: 1280x768 px s 24-bitnim prikazom boja

Proizvođači preporučuju:

- procesor: 64-bit quadcore
- RAM memorija: 8 GB
- grafička kartica: OpenGL kartica s 2 GB RAM-a
- monitor: 1920×1080 px s 24-bitnim prikazom boja

Konfiguracija za profesionalnu upotrebu:

- procesor: 64-bit quadcore
- RAM memorija: 16 GB
- grafička kartica: dvije OpenGL kartice s 4 GB RAM-a
- monitor: dva full HDs 24-bitnim prikazom boja [2]

Prilikom prvog otvaranja *Blendera*otvara se standardno sučelje koje prikazuje verziju programa koji se koristi te mogućnost otvaranja prijašnjih datoteka i projekata, poveznica kao što su upute za korištenje, web stranica i sl. Također se može otvoriti i posljednji projekt na kojem se radilo. (slika 1)

Slika 1 Sučelje Blendera – početni zaslon

Klikom na radnu površinu prikazuje se zadani izgled sučelja u *Blenderu.* Ona se sastoji od kamere, svjetiljke (*lamp*), kocke i mreže koordinatnog sustava. Sučelje je podijeljeno na nekoliko dijelova (upravljačkih prozora): lijevo se nalazi alatna traka, u sredini 3D prikaz, desno traka sa značajkama (*properties*) te na dnu vremenska traka (*timeline*) za upravljanje kadrovima. (slika 2)

Slika 2 Sučelje Blendera

U *Blenderu*je upravljanje objektima omogućeno biranjem raznih načina upravljanja kao što su: *Object mode*(upravljanje objektom), *Edit Mode* (modeliranje objekta), *Sculpt*

Mode (modeliranje), *VertexPaint* (bojanje vrhova), *TexturePaint* (bojanje tekstura) i *WeightPaint* (određivanje utjecaja pri manipulaciji). (slika 3) [3]

Pri izradi 3D modela korištena su samo dva načina a to su *Object Mode* i *Edit Mode. Object Mode* služi za označavanje cijelog objekta, dok prelaskom u *Edit Mode* (pritiskom na tipku *Tab*) postoji mogućnost označavanje vrha objekta (*vertex*), brida objekta (*edge*), te stranice objekta (*face*). (slika 4)

Slika 4 Vrh, brid i stranica kocke

2.2 Dodavanje i namještanje pozadinskih slika

Prije samog početak modeliranja dodana je fotografija koja je služila kao tlocrt, nacrt i bokocrt samog aviona radi lakšeg početka modeliranja i snalaženja u prostoru te kao pokazatelj omjera veličina dijelova. Otvaranjem *N-panela* dobiva se mogućnost dodavanja pozadinskih slika (*Backgroundimage*).(slika 5)

Slika 5 Izbornik za dodavanje pozadinskih slika

Slika je dodana u tri perspektive: tlocrtu (*top view*, *Num 7*), nacrtu (*front view*, *Num 1*), te bokocrtu (*rightview*, *Num 3*). Promjenom perspektiva slika je namještena na ishodište koordinatnih osi pomoću kvadra koji je dobiven povećanjem (naredba *Scale*) zadane kocke prilikom otvaranja programa. (slike 6, 7, 8) [4]

Slika 6 Tlocrt

Slika 7 Bokocrt

Slika 8Nacrt

2.3 Cyclesrenderer

Cycles je *Blenderov* alat za renderiranje koji koristi *Ray-tracing*. Da bi bio u korisnoj upotrebi on se treba nalaziti kao aktivni renderer u gornjem zaglavlju programa. Kada je to učinjeno, interaktivno renderiranje može se započeti postavljajući 3D *View editor* na način crtanja Rendered(*shift-Z*).

Dok *Blenderrenderer* radi na način da računa koji objekt je vidljiv kameri, *Cyclesrenderer* koristi simulaciju ponašanja svjetla. Točnije rečeno

Cyclesrenderer stvara sliku tako što prati put zraka svjetlosti kroz scenu te prati svjetlosne zrake tako što ih šalje od kamere, umjesto da ih šalje od izvora svjetlosti. *Cycles* pri tome u smislu fotorealizma daje bolje rezultate jer prikazuje potpuno osvjetljenje i daje fizički točne izračune.

lako se razvojem *Cyclesa* postižu sve veće i veće brzine renderiranja, i dalje je negativna strana ovog renderera upravo brzina renderiranja. Međutim, uzevši u obzir količinu operacija i informacija s kojim raspolaže te činjenicu da "imitira" kompleksni sustav stvarne svjetlosti, ova negativna strana se ne bi trebala uzimati za zlo ovako kompleksnom i korisnom rendereru. Otkako je *CyclesEngine* postao dijelom *Blendera*, sam program je postao mnogo korisniji te je i broj njegovih korisnika porastao. Stroga je model napravljen, renderiran i animiran u *Cyclesrenderu*.(slika 9)

Default	+ ×	Scene	+ ×	Cycles Render	òv
				Blender <u>R</u> ender	
				<u>B</u> lender Game	
				Cycles Render	
				Engine	

Slika 9 Prebacivanje u CyclesRender

3 IZRADA 3D MODELA AVIONA

3.1 Izrada trupa

Svi dijelo aviona su dodani u *Objectmodeu*a oblikovani u *Editmodeu*. Trup aviona izrađen je iz jedne plohe (*Plane*) koja je dodana pomoću izbornika *Add* – *Mesh–Plane*, (slika 10). Nakon dodavanja objekta, za isti objekt je u panelu *Properties*traciuključen modifikator*Mirror*kako bi se zrcalio, dakle svi postupci na jednom objektu zrcale se na drugi, te je uključeno zrcaljenje po z osi i *Clipping*, (slika 11). Zatim je u tlocrtu i bokocrtu objekt postavljen u ispravan položaj, (slika 12). Modeliranje trupa nastavljeno jeoznačavanjem dva vrha (*Vertices*) objekta u *EditModeu,* te nakon toga nekolikoizduživanja naredbom *Extrude*(*E*) i smanjivanje, odnosno povećavanje naredbom *Scale*(*S*) istih točaka pomoćuslike u bokocrtu. Preciznije prilagođavanje položaja točke ili više točaka postignuto je pomoću naredbe *Grab* (*G*), nakon što su točke označene naredbom *Box-select* (*B*).(slika 13)

	🝻 Group Instance		
	👵 Force Field		
	💡 Lamp		
	😤 Came <u>r</u> a		
	12 C		Plane
	V Speaker		🗊 Cube
	🙏 Empty		Circle Ca
	Lattice		🕀 UV Sphere 🌕
	★ <u>A</u> rmature		💿 Ico Sphere
	E Toyt		🕤 Cylinder
			💧 Cone
	💣 Metabali		Torus
	💙 Curve		🛄 Grid
	🗑 Mesh	₽	🚏 Monkey
t	Add Object 🥡	Obj	ect Mode 🕴 🕀 🗧 🍕
		П	

Slika 10 Izbornik za dodavanje objekata

Slika 11 Uključivanje modifikatoraMirror

Slika 12 Namještanje pozicije u bokocrtu

Slika 13 Izgled trupa

Nakon prilagođavanja dobivanja željenog oblika uključen i je modifikator Subdivision Surfacekako bi se ploha podijelila na manje dijelove i bi 14) kako se ostvario zaglađeni izgled. (slika Kako je u modifikatoru Mirroruključena opcija Clippingkoja omogućava da točke ne prelaze preko zamišljene ravnine te spaja točke koje se dovoljno približe, približavanjem istih dobivamo zatvoreni trup aviona. (slika 16) Naredbom Loopcutandslide(ctrl+R) postignuta je podjela ploha na još manje dijelove radi bolje zakrivljenosti.

Slika 14 Uključivanje modifikatoraSubdivisionSurface

Slika 15SubdivisionSurface postavke

Slika 16 Prikaz nardbeClipping

3.2 Izrada krila

Krila su izrađena pomoću kocke koja je dodana kao i ploha za izradu trupa aviona. (slika 18) Također je uključen modifikator*Mirror*ali u ovom slučaju je uključeno zrcaljenje po x osi. (slika 18) Naredbama Scale, Extrude te Grab krila su dovedena u položaj koji je prilagođen pomoću pozadinskih slika tlocrta i nacrta.

Uključen je modifikator*SubdivisionSurface*kako bi se omogućila zakrivljenost. Kako bi se dobio izgled aerodinamičnosti krila, sve plohe stražnjeg dijela krila smanjene su po z osi naredbom *Scale*. Na isti način su napravljena stražnja krila na repu. (slika 20) Kako bi se kasnije mogla dodavati tekstura dio krila označen je te se naredbom *Separate* (*P*) i klikom na *selection*u padajućemizborniku stvoren novi objekt odvojen od ostatka krila. (slika 21)

Slika 17Izmodeliran trup aviona

Slika 18 Početak modeliranja krila i modifikatorMirror

Slika 19 Prednja krila

Slika 20 Stražnja krila

Slika 21 Naredba Separate

3.3 Izrada stakala

Na trupu aviona ostao je prostor predviđen za dva stakla, odnosno kabinu.Dvije točke pomoću naredbe *Extrude*su izduživane nekoliko puta kako bi se dobio željeni oblik.(slika 22) Zatim je jedna od točaka ruba trupa kopirana nekoliko puta. Sve kopirane točke su spojene kako bi se dobio okvir. Isti postupak je ponovljen nekoliko puta kako bi se dobila mreža, te su se zatim označavale četiri točke koje će biti vrhovi plohe i naredbom *Fill (F)* se stvorila ispunjena ploha. (slika 23) Nakon toga se označe sve plohe, te se naredbom *Separate (P)* i klikom na *selection*u padajućem izborniku stvara novi objekt

odvojen od trupa kako bi se kasnije mogla dodavati tekstura neovisno o trupu aviona.(slika 23) Isti postupak se provodi za drugo staklo.

Slika 22 Pregrada za stakla

Slika 23 Naredba Separate

3.4 Izrada okvira stakala

Okvir stakala napravljen je na način da su označeni rubovi trupa koji omeđuju staklo, te naredbom*Separate* (*P*) i klikom na *selection*u padajućem izborniku stvoren novi objekt koji će se modelirati.(slika 24) Nadalje označen je novi oblik koji je i dalje na položaju rubova trupa, te se naredbom*Extrude* (*E*) rubovi izdižu po z osi, ponovno se pozivanaredba*Extrude* (*E*) ali ovog puta poy osi i mišem se izdužuje jedva vidljivo.(slika 25) Precizno izduživanje se postiže

pritiskom tipke *shift*. Zatim se opet poziva naredba*Extrude (E)* po z osi i spušta se uravninu početne pozicije. (slika 26)

Slika 24 Označeni rubovi trupa

Slika 25 Izduživanje okvira

Slika 26 Gotovi okviri

3.5 Izrada repa

Naredbom *Loopcutandslide*(*ctrl*+*R*) stražnji dio trupa se podjeli na manje dijelove kako bi se dobile uske plohe, koje će se naredbom *Extrude* (*E*)i *Scale*(*S*) izdužiti tepovećati ili smanjiti kako bi se dobio željeni oblik repa aviona. (slika 27) (slika 28) (slika 29)

Slika 27Loopcutandslide (ctrl+R)

Slika 28 Označene plohe namijenjene za izradu repa

Slika 29 Prilagođavanje oblika repa

Drugi dio repa napravljen je iz novog objekta, točnije kocke. Kocka je pomoću pozadinske slike naredbama *Scale (S)* oblikovana da prati linije dijela repa integriranog u trup. Za dodatno prilagođavanje točaka, kako bi se linije dijelova u potpunosti pratile, bilo ih je potrebno označiti i naredbom *Grab (G)* postaviti u željeni položaj. (slika 30)

Slika 30 Drugi dio repa

3.6 Izrada kotača i amortizera

Kotači su izrađeni pomoću valjka kojem je uključeni modifikatori *SubdivisonSurfacei Mirror.* Zatim je kotač rotiran naredbom *Rotate (R)* i postavljen u željeni položaj pomoću vektora koordinatnih osi. Nakon namještanja položaja, naredbom *Loopcutandslide*(*ctrl+R*) plohe valjka su podijeljene na više dijelova kako se naredbama *Extrude (E) i Scale (S)* mogli dobiti željeni utori, izbočine na kotaču odnosno gumi. (slika 31) . Zatim su označene plohe koje će predstavljati nosač gume, te se naredbom *Separate (P)* i klikom na *selection*u padajućem izborniku stvara novi objekt odvojen od ostatka kako bi se kasnije mogla dodavati neovisna tekstura. (slika 32) S unutarnje strane nosača gume naredbama *Extrude (E), Rotate (R)* te *Scale (S)* izmodelirani su nosači cijelog kotača. Postavljanje u željeni položaj također je izvedeno pomoću vektora koordinatnih osi.(slika 33)

Slika 31 Modeliranje kotača

Slika 32 Naredba Separate

Slika 33 Kotači u željenoj poziciji

Amortizeri u napravljenina način da je dodana kružnica te pomoću modifikatora*Screw,* modifikator pomoću kojeg se izrađuju spirale, opruge, amortizeri i sl. Bitno je postaviti os kružnice kako bi se postigao pravilan profil amortizera.(slika 34) Također je u postavkama modifikatora potrebno promijeniti parametre kako bi se postigao željeni oblik. U ovom slučaju kut zaokreta je 6746 stupnjeva, broj koraka je 512 te visina jedne iteracije spirale (*Screw*) 10,600 točaka.(slika 35) Nakon dobivanja željenog oblika amortizeri se smještaju oko nosača kotača.

Slika 34 Pravilno (lijevo) i nepravilno (desno) postavljena kružnica

	s 💿 📦 🔗	🌽 🏹 💿 🖾 ‡	‡.≁_```
🖈 😵 🛛 📦 A	MORTIZER.00		
Add Modifier			
▼ 🖞 Scre	w		• • ×
Apply	y	Сору	
Axis: Y		Screw:	10.600 🖻
AxisOb: 🥡	P		
Angle:	6746° 🕨	Calc Order	
Steps:	512 🕨	📃 Flip	
• Render Steps:	16 🕨	Iterations:	
🧉 Smooth Sha	ding	Stretch U	
📃 Merge Vertie	ces	Stretch V	

Slika 35ModifikatorScrew

3.7 Izrada nosa aviona i propelera

Nos aviona napravljen je vrlo jednostavno, pomoću valjka. Odnosno izvlačenjem, naredbom *Extrude (E)* i smanjivanjem, naredbom *Scale (S)* jedne baze valjka. Takvim postupkom se dobiva oblik sličan metku, te se pomoću vektora koordinatnih osi pažljivo prislanja na trup aviona.

Slika 36 Nos aviona

Propeler je sastavljen od tri kraka. Izmodeliran je samo jedan, modeliranjem kocke dodane kraticom *shift+A*, te izvlačenjem i smanjivanjem točaka naredbom *Extrude (E)* i *Scale (S)*, te preciznim namještenjem točaka pomoću naredbe *Grab(G)*.(slika 37) Nakon dobivanja željenog oblika jedna strana propelera, naredbom *Scale (S)*, smanjena je kako bi se postigao izgled aerodinamičnosti.Također, zbog izgleda aerodinamičnosti označene su točke do otprilike polovice koje u zarotirane naredbom *Rotate (R)*. Time je završen oblik jednog kraka, te su ostala dva duplicirana pritiskom na *Duplicate*u *Tools*izborniku na lijevoj strani sučelja te rotirani u željeni položaju naredbom *Rotate (R)*. (slika 38) Nakon toga propeler se smješta na nos aviona. (slika 39)

Slika 37Jedan krak propelera

Slika 38Naredba Duplicate

Slika 39 Smještanje propelera

4 RENDERIRANJE U BLENDERU

4.1 Teksturiranje u Blenderu

Izrada bilo kojeg objekta, modela ili scene u *Blenderu*nemoguća je bez korištenja tekstura (engl. *textures*). Teksturiranje podrazumijeva dodavanje 2D slike na 3D objekt kako bi se što realnije prikazao isti taj objekt. Odnosno modelirani sivi objekt dobiva svoj realan izgled. Tekstura se može kreirati pomoću određene fotografije ili videa ili korištenjem već pripremljenih tekstura integriranih u program.

Prikazan glavni prozor za dodavanje tekstura koji ima opcije *brush, brushmask i imagetexture,* (slika 40).Postoje i gotove opcije tekstura kao što su nebo, cigla itd. No najzanimljivija je opcija *Image Texture* gdje korisnik sam upravlja izgledom objekta.

U ovom slučaju teksturiranje započinje dodavanjem slike za neki materijal odabranog dijela aviona. Materijali ne mogu postići efekt realnosti, ali oni daju obilježja objektu,kao što su na primjer prozirnost (engl. *transparency*), efekt stakla (engl. *glass*), efekt emitiranja svjetlosti (engl. *emission*), itd.

Dodaje se materijal i nakon toga je potrebno kliknuti na sivu točkicu uz alat *Color.* Otvara se izbornik s opcijama.(slika 41)

Dakle nakon što je dodan materijal, potreban je povratak u *Texture* izbornik i odabir *Image texture* kako bi se prikazivala slika postavljena u izborniku za materijale. [5]

🖉 🐨 tijelo+krila	V //				
) 🗊 🔗 🌽		図社	?	
🖈 🚼 👌 🥥 tijelo-	⊦krila	👂 Mate	rial.012		
📕 Image Texture.00					
▼ Node					
	🛃 🕴 cam	ouflaged	2	F 💾 🗙	
	Open in Python:	bpy.op			
	Repeat	Repeat			
	Single Ima	ge			
Vector:					
▼ Mapping					
Texture	oint	Vector			
Location:	Rotation:		Scale:		
≪ X: 0.00000 ►				1.000 ▷	
≤ Y: 0.00000 ト				1.000 ト	
∢ Z: 0.00000 ▷				1.000 ト	
Projection:					

Slika 40 Prozor za dodavanje tekstura

E Input	Texture	Color	Convertor	Link
Attribute				
<u>R</u> GB				
	Image Texture	Mix		
	Magic Text Add node to in Musgrave	put.		
			1: Image Tex	eture •
			2:	0

Slika 41 Izbornik tekstura

4.1.1 UV unwrapp

Kako bi postavili 2D teksturu na 3D objekt model se razvlači na 2D površinu. Alat za taj postupak je *UV unwrapp.* Alat funkcionira na način da linije objekta pretvara u šavove na kojima se razdvaja model u 2D sliku. (slika 42) Šavovi kontroliraju gdje se 3D model reže pa zato moramo paziti da šavova ima što manje dok slika mora biti što bolje razvučena bez da se lica modela preklapaju, što kod kompleksnijih modela zahtjeva više linija šavova.

Slika 42 Primjer UV unwrappa

4.1.2 Node editor

Node Editor je editor koji olakšava rad u Blenderu na način da korisnicima pruža mogućnost olakšanog rješavanja složenih zadataka uz pomoć "paketa" čije funkcije pretvaraju određene ulaze u izlaze. On također pruža korisnicima organiziraniji uvid u tijek procesa kreiranja željenog modela ili scene. Vrsta je sučelja koja je fleksibilna za rad i kombinira najbolje od svijeta programiranja i svijeta korištenja Blendera.Dijelovi glavnog izbornika Node editor-a su:

View- izbornik koji mijenja pogled Node editor-a;

Select – izbornik koji dopušta biranje jednog čvora ili grupe čvorova;

Add - dodavanje čvorova;

Node – akcije sa odabranim čvorom;

Material, Compositing, Texture - grupe čvorova;

Use Nodes – govori programu da li da koristi čvorove prilikom računanja boja ili renderiranja gotove slike ili ne;

Use Pinned – kada uključena, ova opcija čini da editor zadrži materijal ili teksturu čak i kada korisnik odabere drugi objekt.

Čvorovi (engl. *Nodes*) predstavljaju vizualni izraz matematičkih operacija. Složene operacije su podijeljene na jednostavne čvorove te se upravo tu očituje olakšano rješavanje koje korisniku daje slobodu i fleksibilnost. Čvorovi služe za izgradnju materijala i za postavke modela ili scene nešto prirodnijim putem. Umjesto liste postavki za određeni materijal, uz pomoć čvorova možemo vizualizirati na koji način su te postavke upotrijebljene, kako se neke informacije mogu ponovno upotrijebiti te koji procesi će se dogoditi za vrijednosti ulaza koje se unose u čvorove. Čvorovi se međusobno vežu, a te veze među njima znače da se informacija prenosi sa jednog na drugi. Iako svaki čvor ima svoju specifičnu ulogu i posao, kombinirati se mogu na stotine načina te tako pružaju veliki broj različitih rezultata. Mrežom čvorova su definirani materijali, svjetla i pozadine i ona za *output* daje vrijednosti, vektore, boje i *shadere*. [5]

Slika 43Node Editor

4.1.3 Shaderiu Blenderu

4.1.3.1 Anisotropic

Anisotropicshader se koristi kada se objektu želi dodati sjajni odsjaj. Tangente koje se koriste za sjenčanje su izvedene iz aktivne UV mape, a ako UV mapa nije dostupna, tangente su automatski generirane koristeći sferno mapiranje na temelju *meshboundingbox*-a. Ponaša se identično kao *Glossyshader*, ali refleksiju skreće u jednom smjeru. Koristi se za realističan prikaz brušenih metala ili materijala gdje se svjetlo ne reflektira ravnomjerno.[6]

Slika 44Anisotropicshader

4.1.3.2 Diffuse BSDF¹

Diffuseshader je *shader* pri čijem korištenju objekt prima svjetlost koja se širi bez vidljivih refleksija. Jednostavno rečeno, *Diffuseshader* određuje boju objekta kada do njegove površine dopire bilo koja vrsta svjetlosti. Koristi se kod objekata koji ne posjeduju svojstvo reflektiranja ili za miješanje sa drugim shader-ima. Takve površine su naprimjer zidovi, papir ili pijesak.[6]

Slika 45Diffuseshader

4.1.3.3 Glass BSDF

Glass shader čini da objekt poprimi teksturu pravog stakla. Prilikom doticaja površine objekta svjetlost se savija i reflektira prema indeksu loma

¹ BSDF je oznaka za "Bidirectional Scattering Distribution Function". Prijevod na hrvatski jezik glasi: "Dvosmjerna distribucijska funckija raspršenja".

svjetlosti koji određuje koliko će se svjetlost prelomiti prilikom prolaska kroz površinu objekta na kojem je primijenjen Glass shader te koliko nastale refleksije vidljive.[6]

Slika 46 Glass shaderi

4.1.3.4 Glossy BSDF

Koristi se za dodavanje refleksije objektima u kojima se tada može vidjeti odraz svjetlosti, drugih objekata, okoline itd. Jako često se primjenjuje, a posebice u kombinaciji sa *Diffuseshader*-om. Tom prilikom se stvaraju materijali koji su u čestoj upotrebi u svakodnevnom životu, kao što su plastika, metal, keramika, drvo. Koristeći samo *Glossyshader* može se uspješno prikazati zrcalo.[6]

Slika 47Glossyshaderi

4.1.3.5 Mixshader

Mixshader koristi se za miješanje dva *shadera* zajedno. Miješanje se može koristiti za raspored materijala, pri čemu se ulaz *Factor* može, na primjer, povezati s *BlendWeight*node čvorom.[6]

Slika 48MixShader

4.1.3.6 Transparent BSDF

Koristi se za efekt transparentnosti, bez refrakcije. Svjetlost prolazi ravno kroz površinu, kao da geometrija ne postoji, te ovaj *shader* na put svjetla utječe drugačije od drugih dvosmjernih distribucijskih funkcija raspršenja. Potrebno je naglasiti da samo čisti bijeli *Transparent shader* će za rezultat imati potpunu transparentnost.[6]

Slika 49 Transparent Shaderi

4.1.3.7 Velvet

Kada se u Blenderu želi realistično prikazati odjeća, tada se koristi Velvet shader. Nije koristan u samostalnoj upotrebi, no u kombinaciji sa drugim shader-ima daje poprilično dobre rezultate.[6]

Slika 50 Velvet shader

4.1.3.8 Voronoi

Čvor *VoronoiTexture* dodaje proceduralnu teksturu koja proizvodi *Voronoi*stanice.[6]

Slika 51 Voronoishaderi

4.2 Teksturiranje modela pomoću pomoću ImageTexture

4.2.1 Teksturiranje trupa i krila

Trup i krila aviona označeni su i grupirani u cjelinu naredbom *Join* u *Tools*izborniku na lijevoj strani sučelja jer će imati istu teksturu. Dakle kako je objašnjeno u gornjem dijelu rada dodana je slika u izborniku materijala te u izborniku tekstura odabrana opcija *Imagetexture.* (slika 52)

🖈 🐉 🛛 🥡 tijelo+krila 👘 🕘 Material.012								
🖪 Image Texture.001								
▼ Node :								
📇 🗧 camouflaged 2 F 🔚 🕽	ĸ							
Flat								
Repeat								
Single Image								
Vector: Default								
Texture Point Vector Normal								
Location: Rotation: Scale:								
(₹ X: 0.00000) ₹ X: 0°) ₹ X: 1.000								
Projection:								
X 💠 Y 🗘 Z								

Slika 52 Postavke ImageTexture

4.2.2 Teksturiranje propelera, nosa i ostalih dijelova krila

Teksturiranje ovih dijelova napravljeno je pomoću *UV unwrapp* naredbe.Otvoren pomoćni prozor sa *UV/Image Editor* načinom uređivanja modela. Model nosa u *Object mode* (na slici x s desne strane) je cjelokupno označen, prebačen u *Edit mode te* uz pomoć prečaca slovom "U" otvoren je prozor sa naredbama među kojima je izabrana naredba *Project FromView*. Sljedeći korak je klik na *Image – Open image* te odabir fotografije po želji koja je prethodno spremljena na računalu. Ovaj korak bit će korišten u svakom postupku UV unwrappinga.(slika 53) [7]

Slika 53 Project fromview

Model propelera u *Object mode* (na slici 54 s desne strane) je cjelokupno označen, prebačen u *Edit mode te* uz pomoć prečaca slovom "U" otvoren je prozor sa naredbama među kojima je izabrana naredba *Unwrapp*. [7]

Slika 54 UV unwrapping

Model repa u *Object mode* (na slici 55 s desne strane) je cjelokupno označen, prebačen u *Edit mode te* uz pomoć prečaca slovom "U" otvoren je prozor sa naredbama među kojima je izabrana naredba *Unwrapp*. [7]

Slika 55Unwrapp

4.3 Kombiniranje shadera u Node editoru za sve dijelove aviona

Shadere dodajemo posebno za svaki dio jer se razlikuju barem po jednoj karakteristici kao i kod stvarnog modela.

4.3.1 Trup i krila

Kako su prije trup i krila grupirani sada se gledaju kao jedan objekt. Odabere se o objekt na kojem se radi i radni prozor se podijeli u dva prozora. Desno se vidi odabrani objekt, a na lijevoj strani odabere se *Node editor*. On omogućuje, uz osnovno dodavanje tekstura i materijala, i opcije multipliciranja, kontrolu snage, omjer boja, spontano miješanje tekstura i boja i mnoge druge. Ovakav način dodatnog teksturiranja koristimo kako dobili što realističniji prikaz elemenata. U slučaju trupa i krila korištene su dvije teksture pozvane pomoću slika (*Imagetexture*) te *diffuse, glossy i mix shaderi*, koji služi za kombinaciju prva dva,kako bi se postigao željeni metalni izgled i refleksija sunca. (slika 56) [7]

270	Image Texture	Dimuse BSDP		Wix Shader		V Material Output	
	Color 🜻		BSDF •		hader 🧧 🕴	Surface	
	Alpha 🔍	O Color		lac: 0	1.852	Volume	
	🖴 ca 2 F 🔚 🗙	Roughness		Shader.		Displacement	
		Normal		Shader			
	Linear	V Glossy BSDF		Multiply			
1	Flat 🔅		BSDF				
1	Repeat				Color:		
1		Color		Multiply			
		Roughness					
		Normal		fac: (
6				Color1			
	image rexture			Color2			
	Color						diam's and a second
	Alpha •						
	🔚 🐽 2 F 🔚 🗙						
- 0							15
- 17							
- B							
	Single Image						
•							THE DESCRIPTION

Slika 56Node editor trupa i krila

4.3.2 Rep i dio krila

Jednako kao u slučaju trupa i aviona korištene su dvije teksture pozvane pomoću slika (*Imagetexture*) te *diffuse, glossy i mix shaderi*, koji služi za kombinaciju prva dvakako bi se postigao željeni metalni izgled i refleksija sunca ali s malo drugačijim postavkama. (slika 57) [7]

Slika 57Node editor repa i dijela krila

4.3.3 Propeler i nos aviona

U slučaju propelera i nosa aviona korištena je jedna tekstura slike, te *diffuse, glossy i mix shaderi*, koji služi za kombinaciju prva dvakako bi se postigao željeni metalni izgled. Vrijednosti shadera se razlikuju zbog toga što su korištene dvije različite slike za teksturu, pa se varijacijama postavki pokušava dočarati isti efekt. [7]

Slika 58Node editor propelera

Slika 59Node editor nosa

4.3.4 Kotači, gume i amortizeri

Dobivanje teksture za nosače gume vrlo je jednostavno, koristili su se*Diffuse BSDF i Anisotropic BSDF shaderi.* (slika 60)

			Provide Section and Cold Section (Section 2014) and Provide Section 2014
	Anisotropic BSDF	V Material Output	
	BSDF	Surface	
V Diffuse BSDF		Volume	
BSDF O	Olor	Displacement	
Color	Roughness: 0.542		
Roughness: 0.083	Anisotropy: -0.300		
 Normal 	Rotation: 0.492		
	Normal		
	Tangent		

Slika 60Node editor nosača za gume

Amortizeri su teksturirani*Mixshaderom,* kombinacijom *Diffuse BSDF, kojem je boja promijenjena u crvenu i Glossy BSDF shadera*kako bi se dobio metalni izgled.(slika 61) [7]

V Diffuse BSDF		
BSDF Color Roughness: 0.000 Normal	Mix Shader Mix Shader Shader Shader Fac: 0.064 Displacement	
Glossy BSDF BSDF	Shader	
GGX Color Roughness: 0.200 Normal		

Slika 61Node editor amortizera

Teksturu gume nije lako postići, te su čvorovi za tu teksturu mnogobrojni i međusobno povezani. Korišteni su *Voronoi*tekstura i *input* RGB sustav boja spojeni preko *Multiply*čvora sa *Diffuse BSDF i Velvet BSDF shaderima*, također dodan je čvor za posvjetljavanje*Lighten,* kako *Mixshader*može kombinirati samo dva *shadera* dodan je još jedan kako bi se mogao priključiti i *Glossyshader.* Mreža spajanja čvorova (slika 62)[8]

		V Fresnel		
		Fac •		
		OR: 1.519		Mix Shader Material Output
RGB	V Multiply	P Normal		Shader Surface
Color	Color			Sharker
	Multiply	V Diffuse BSDF	Wix Shader	Shader Displacement
	Camp	BSDF 😐	Shader 🔶	
	• Fac: (0.500	Olor Color	Fac	
	Octor1	Roughness: 0.000	Shader	
	Color2	Normal	Shåder	
Voronoi Texture		Velvet BSDF	V Glossy BSDF	
Color		BSDF	BSDF 🔍	
Fac 🔍		Sigmar 1.000		
Cels		Normal	O Color	
Vector		CONSCIENCT.	Roughness: 0.150	
• Scale: 500.000 •		V Lighten	Normal	
		Color ᅌ		
		Lighten ‡		
		Clamp		
		• Fac: 1.000		
		Color1		
		Color2		

Slika 62Node editor gume

Slika 63 Renderirana guma

4.3.5 Gumeni okviri stakala

Okviri stakala zamišljeni su da budu gumeni, stoga se iskoristila mreža čvorova koja je korištena za gume kotača. (slika 63) [8]

Slika 64 Gumeni okviri

4.3.6 Staklo

Teksturu stakla je vrlo jednostavno i logično iskombinirati.Korišteni *Glass BSDF i Transparent BSDF* spojeni su preko *Mix shadera* na *Output.* (slika 65)

Glass BSDF BSDF	V Mix Shader	Material Output
Beckmann Color Roughness: 0.010 IOR: 1.550 Normal	Shader Fac: 0.700 Shader Shader	 Surface Volume Displacement
Transparent BSDF BSDF Color		

4.4 Priprema scene

HDR-slika koja ima funkciju pozadine dodaje se tako da se sa desne strane u postavkama odabere opcija World te se u dodatnim opcijama postavljaju *surface– background i color–environmenttexture*. Te opcije omogućuju da se dodana slika ponaša kao pozadina scene i da utječe na teksturu okoline. Slika se dodaje klikom na opciju Open, pronađe se željena putanja slike u računalu i pritiskom na Accept potvrđuje se odabir. (slika 65)

Također se mora postaviti osvjetljenje. U ovom slučaju je osvjetljenje sunce, iako postoje i druge opcije kao što je *Point, Spot, Hemi, Area.* Postavljena je da površina emitira, bijela boja, veličina 2 te snaga 3,7. (slika 66) Zatim se objekt postavlja u željeni položaj, pritiskom tipke 0 (NUM 0) ulazimo u *Camera Mode,* pritiskom na tipku N otvara se izbornik i pod dijelom *View*označava se *Lockcamera to view*, kako bi kamera pratila korisnikov pogled kao što je prikazano na ekranu, (slika 67)

Slika 65 Postavljanje HDR slike

Slika 66 Postavke osvjetljenja

Scale:	
≪ X:	0.315 ▷ 📴
≪ Y <u>:</u>	0.315 ▷ 🕞
≪ Z:	0.315 > 🕞
🔻 🗹 Grease Pencil Layer	
Scene	
/+ +	
New I	
▼ View	
4 Lens:	
Lock to Object:	
🥡 tijelo+krila	
Lock Camera to View	
Clint	
< Start:	0.100 >
< End:	1000.000 >
Local Camera:	
📦 Camera	
Render Border	
▼ 3D Cursor	
I anatian.	
4 Y	28 26356
4 Y	28.20550
	-2.37811 >
▼ Item	
Gamera	
▶ Display	

Slika 67LockCamera to View

Također je napravljena pista pomoću dodavanja plohe *Add-Mesh-Plane,* te skaliranjem naredbom *Scale.* Napravljeno je teksturiranje pomoću opcije *ImageTexture*, kao i slučaju dijelova aviona. (slika 68)

Slika 68Teksturiranje piste

4.5 Postavke Rendera i renderiranje

Prije renderiranja namještaju se postavke u *Render Panelu*, kao što su rezolucija, kvaliteta, format u kojem će se slika spremiti i sl. U slučaju ovog projekta postavke su sljedeće: rezolucija 1920x1080px, kvaliteta 100%, format je JPEG. Kada su postavke postavljene klikom miša na render u gornjem lijevom kutu postavki kako bi se renderiranje pokrenulo. Završetkom renderiranja te pritiskom na tipku F3 otvara se izbornik za spremanje slike. Slike74 i 75 su renderiranje popeleru, odnosno zamućenje istog zbog pokreta.

	\$				
= · 6 • · ·	6 📦 🔗	S. 88	≁		
🖈 🐏 Scope					
Scene					
▼ Render					
🗂 Render	🖆 Anin	nation	n())	Audio	
Display:	Image Ed	litor			} _
Feature Set:	Supporte				
Device:					
Open Shading La	anguage				
▼ Dimensions					
Render Presets				+	-
Resolution:		Frame	Range:		
< X: 19	20 px ⊧	Start I	Frame:	1	
	80 px ⊧	End Fi		600	
		Frame	e Step:	1	
Aspect Ratio:		Frame	Rate:		
	1.000 ⊦	24 fps			
	1.000 🕨	Time Re	emapping		
Border 📃		Old: 1	00 ⊦ ⊴ 1	Ne: 100	
▶ Metadata					
▼ Output					
C:\Users\Matko\Des	ktop\zavsn	i∖konačna	а		1
🧉 Overwrite		🗹 File	Extensior	าร	
Placeholders		Cacl	he Result		
🛃 JPEG		BW		RGB	
Quality:					
ality for image format	s that supp	ort lossy	compress	sion.	
thon: ImageFormatSe	ettings.q	uality er image	setting		itv
Lipo Thickness	e j.renu	er . Indge	_seccini		rty

Slika 69Render Panel

Slika 70 Početak renderiranja

Slika 71 Izgled tijekom renderiranja

Slika 72 Gotovo renderiranje

Slika 73 lzgled izbornika za spremanje

Slika 74 Isključen MotionBlur

Slika 75 Uključen MotionBlur

5 ANIMACIJA

Ručno animiranje u Blenderu se radi pomoću opcije *keyframeovi*. Prije početka animiranja bitno je podesiti određene opcije kao što su: rezolucija *(Resolution)*, skaliranje rezolucije (*Percentagescale for renderresolution*), početni i završni kadar (*Start Frame, EndFrame*), pomak kadra (*FrameStep*), količina renderiranih kadrova po sekundi (*Framepersecond FPS*), format u kojem će se renderirani kadrovi animacije spremiti (*File format to savetherenderimages as*) i lokaciju gdje će se spremiti renderirani kadrovi (*Output, Directory/Name to saveanimations*). [6]

5.1 Animiranje propelera

Animiranje objekata provodi se ručno,na način da se označi pojedini objekt te se na vremenskoj crti (*Timeline*) odabere kadar u kojem se radi i tada se objekt modificira. Objekt se u određenom kadru može skalirati, pozicionirati, rotirati, modelirati, itd. Kada se naprave sve promjene na objektu, tada se trenutna lokacija u kadru sprema tipkom I. Na taj je način lokacija objekta spremljena u odabranom kadru (*Keyframe*). Takav postupak je napravljen za propeler koji se treba okretati kroz svih 600 *frameova*animacije. Dodano je nekoliko promjena rotacije s idejom ubrzavanja propelera. (slika 76) Žuta okomita crta predstavlja početak i kraj *keyframova*. (slika 77)

Slika 76 Umetanje keyframeova

Slika 77Timeline

5.2 Stvaranje putanje i namještanje kamera

Putanja (*Path*) dodaje se slično kao objekti, prečicom*Add (shift+A)-Curve-Path.* Zatim se putanja izdužuje kako bi se stvorio željeni oblik. (slika 78)Putanja se stvara kako bi objekt i kamera pratile istu. Objekt i kamere se namještaju na željeni položaj. Označavanjem putanje, aviona i kamera te pritiskom prečice *ctrl+P*otvara se padajući izbornik u kojem se odabire naredba *FollowPath. (slika 79)*[9]

Slika 78 izgled Putanje

Slika 79 Odabir naredbe FollowPath

U scenu je postavljeno više kamera kako bi se mogli mijenjati kadrovi. Prije početka animacije kamere se postavljaju na željene pozicije povoljne za snimanje objekta odnosno aviona. (slika 80) na tri pozicije na *Timelineu*se smještaju markeri koji će predstavljati točku promjene kadra, odnosno aktivne kamere. Na *frameu 1* aktivna je prva kamera, no kada animacija dođe do željenog markera označava se željena kamera i naredbom *BindCamera To Markers*(*ctrl+B*) određuje se da ta kamera postane aktivna. Markeri su postavljeni na *frameove 1, 307 i 450.* (slika 81)[9]

Slika 80 Označene kamere

Slika 81Timeline s markerima

5.3 Postavke rendera za animaciju

Prije renderiranja animacije namještaju se postavke u *Render Panelu*, kao što su rezolucija, kvaliteta, format u kojem će se slika spremiti i sl. U slučaju ovog projekta postavke su sljedeće: rezolucija 1920x1080px, kvaliteta 100%, format je AVI JPEG-video format, *FrameRange* - prvi (1) i posljednji kadar (600) te *Frame Rate*– 24 fps (*framespersecond*). Također se određuje direktorij u koji će se animacija spremiti. Kada su postavke postavljene klikom miša na *Animation* u gornjem lijevom kutu postavki kako bi se renderiranje pokrenulo. (slika 82)

Slika 82Render panel i postavke za animaciju

Renderiranje animacije se odvija tako da *Blender*renderira svaki kadar kao sliku i spaja slike u animaciju. (slika 83) Proces traje jako dugo zbog kompleksnosti objekta i visoko kvalitetnih postavki animacije. Animacija uzlijetanja aviona trajala je 30 h.

Slika 83 Izgled renderiranja

Završetkom renderiranja animacija je spremljena u unaprijed određen direktorij te se ona može pokrenuti u bilo kojem programu za video reprodukciju koja podržava format određen u postavkama.

6 ZAKLJUČAK

Danas je animacija opće prisutna u svim granama društva, od industrije, filmova pa do oglašavanja. Dobro izrađeni modeli mogu izgledati kao stvari iako oni to nisu.

*Blender*je *opensource*i besplatan program koji zadovoljava sva očekivanja za izradu 3D modela i njegovu animaciju. Iako ima malo kompliciranije sučelje i korake izrade, svojom širokom paletom alata, mogućnosti su mu kao i plaćenim *softverima*. Posebna specifičnost je što svi korisnici mogu sudjelovati u razvijanju *software-a* te učiniti *Blender*pristupačnijim i popularnijim.

7 LITERATURA

[1] <u>https://www.blender.org/</u>20.6.2018.

[2] <u>https://en.wikipedia.org/wiki/Blender_(software)</u>20.6.2018.

[3]<u>https://blender.mimi.com.hr/?p=92</u>20.6.2018.

[4] <u>https://www.youtube.com/watch?v=5PxQkqJpnMs&t=1674s</u> 25.5.2018.

[5] Džebić, Ivana, Završni rad, Tipovi shadera u cyclesrenderu, Osijek 2017., Dostupno na:

https://repozitorij.etfos.hr/islandora/object/etfos%3A1640/datastream/PDF/view

[6] Blender 2.79 manual [online], Blenderfoundation, 2017.,

https://docs.blender.org/manual/en/dev/ 30.6.2018.

[7] <u>https://www.youtube.com/watch?v=NW8IfI6IW_4</u>4.6.2018.

[8] <u>https://www.youtube.com/watch?v=QXk_13b45O0&t=4729s</u> 26.5.2018.

[9] <u>https://www.youtube.com/watch?v=Rd9WGXcJpE8</u> 4.6.2018.

8 POPIS SLIKA

Slika 1 Sučelje Blendera – početni zaslon	3
Slika 2 Sučelje Blendera	4
Slika 3 Načini upravljanja	4
Slika 4 Vrh, brid i stranica kocke	5
Slika 5 Izbornik za dodavanje pozadinskih slika	5
Slika 6 Tlocrt	6
Slika 7 Bokocrt Slika 8 Nacrt	6
Slika 9 Prebacivanje u Cycles Render	7
Slika 10 Izbornik za dodavanje objekata	8
Slika 11 Uključivanje modifikatora Mirror	8
Slika 12 Namještanje pozicije u bokocrtu	9
Slika 13 Izgled trupa	9
Slika 14 Uključivanje modifikatora Subdivision Surface	0
Slika 15 Subdivision Surface postavke	0
Slika 16 Prikaz nardbe Clipping	1
Slika 17 Izmodeliran trup aviona	12
Slika 18 Početak modeliranja krila i modifikator Mirror	12
Slika 19 Prednja krila	12
Slika 20 Stražnja krila	13
Slika 21 Naredba Separate	13
Slika 22 Pregrada za stakla	14
Slika 23 Naredba Separate	4
Slika 24 Označeni rubovi trupa	15
Slika 25 Izduživanje okvira	15
Slika 26 Gotovi okviri	16
Slika 27 Loop cut and slide (ctrl+R)	16
Slika 28 Označene plohe namijenjene za izradu repa	17
Slika 29 Prilagođavanje oblika repa	17
Slika 30 Drugi dio repa	8
Slika 31 Modeliranje kotača	19
Slika 32 Naredba Separate	19

Slika 33 Kotači u željenoj poziciji	19
Slika 34 Pravilno (lijevo) i nepravilno (desno) postavljena kružr	nica 20
Slika 35 Modifikator Screw	20
Slika 36 Nos aviona	21
Slika 37 Jedan krak propelera Slika 38 Naredba Dup	licate 22
Slika 39 Smještanje propelera	22
Slika 40 Prozor za dodavanje tekstura	
Slika 41 Izbornik tekstura	
Slika 42 Primjer UV unwrappa	
Slika 43 Node Editor	
Slika 44 Anisotropic shader	
Slika 45 Diffuse shader	
Slika 46 Glass shaderi	
Slika 47 Glossy shaderi	
Slika 48 Mix Shader	
Slika 49 Transparent Shaderi	
Slika 50 Velvet shader	
Slika 51 Voronoi shaderi	
Slika 52 Postavke Image Texture	
Slika 53 Project from view	
Slika 54 UV unwrapping	
Slika 55 Unwrapp	
Slika 56 Node editor trupa i krila	
Slika 57 Node editor repa i dijela krila	
Slika 58 Node editor propelera	35
Slika 59 Node editor nosa	35
Slika 60 Node editor nosača za gume	
Slika 61 Node editor amortizera	
Slika 62 Node editor gume	
Slika 63 Renderirana guma	
Slika 64 Gumeni okviri	
Slika 65 Postavljanje HDR slike	

Slika 66 Postavke osvjetljenja	40
Slika 67 Lock Camera to View	40
Slika 68 Teksturiranje piste	41
Slika 69 Render Panel	42
Slika 70 Početak renderiranja	42
Slika 71 Izgled tijekom renderiranja	43
Slika 72 Gotovo renderiranje	43
Slika 73 Izgled izbornika za spremanje	43
Slika 74 Isključen Motion Blur	44
Slika 75 Uključen Motion Blur	44
Slika 76 Umetanje keyframeova	46
Slika 77 Timeline	46
Slika 78 izgled Putanje	47
Slika 79 Odabir naredbe Follow Path	47
Slika 80 Označene kamere	48
Slika 81 Timeline s markerima	48
Slika 82 Render panel i postavke za animaciju	49
Slika 83 Izgled renderiranja	49